The Material Engineering Diffractometer
BEER at ESS

Instrument overview and status reminder

Přemysl Beran¹, Jan Šaroun¹, Petr Lukáš¹, Jochen Fenske², Mustapha Rouijaa², Gregor Nowak², Martin Müller², Dirk Jan Siemers², Rüdiger Kiehn², Markus Strobl³, Robin Woracek³

¹Nuclear Physics Institute ASCR, Řež, Czech Republic
²Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
³European Spallation Source, Sweden

June 14, 2018, Copenhagen, Denmark

Software Workshop on Engineering Diffraction
Outlook

1. Introduction and reminder of science case
 - BEER instrument teams
 - Engineering Materials
 - Science case
 - Instrument modalities

2. Current instrument status & time schedule

3. Instrument environment and layout
 - Operational environment
 - Instrument component description
 - Day-one performance
 - Sample environment

4. Summary
 - Work-package definition
BEER instrument teams
Presentation of the teams and team members

Nuclear Physics Institute CAS
Czech Republic

- Leading Scientist
 - Přemysl Beran
- Leading Engineer
 - Radim Šejda (NUVIA)
- Core team members
 - Jan Šaroun
 - Petr Lukáš
 - Petr Šittner

Helmholtz-Zentrum Geesthacht
Germany

- Leading Scientist
 - Jochen Fenske
- Leading Engineer
 - Dirk Jan Siemers
- Core team members
 - Martin Müller
 - Rüdiger Kiehn
 - Gregor Nowak
Beamline for European Materials Engineering Research “BEER”
Science case
Why the BEER instrument is proposed?

Scientific drivers & goals

• more COMPLEX materials
Science case
Why the BEER instrument is proposed?

Scientific drivers & goals
- more COMPLEX materials
- MULTI-PHASE and composite materials
Science case
Why the BEER instrument is proposed?

Scientific drivers & goals
- more COMPLEX materials
- MULTI-PHASE and composite materials
- *IN-SITU* testing in REAL processing conditions
Science case
Why the BEER instrument is proposed?

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- *IN-SITU* testing in REAL processing conditions
- design of NEW materials
Science case
Why the BEER instrument is proposed?

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- *IN-SITU* testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties
Science case
Why the BEER instrument is proposed?

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- *IN-SITU* testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

What is needed
Why the BEER instrument is proposed?

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- *IN-SITU* testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

What is needed

- high neutron flux
Science case
Why the BEER instrument is proposed?

Scientific drivers & goals
- more COMPLEX materials
- MULTI-PHASE and composite materials
- *IN-SITU* testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

What is needed
- high neutron flux
- variable resolution and wavelength
Science case
Why the BEER instrument is proposed?

Scientific drivers & goals
- more COMPLEX materials
- MULTI-PHASE and composite materials
- *IN-SITU* testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

What is needed
- high neutron flux
- variable resolution and wavelength
- high detector coverage
Science case
Why the BEER instrument is proposed?

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- \textit{IN-SITU} testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

What is needed

- high neutron flux
- variable resolution and wavelength
- high detector coverage
- combination of method (diffraction, SANS, imaging, ...)

Why the BEER instrument is proposed?

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- \textit{IN-SITU} testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

What is needed

- high neutron flux
- variable resolution and wavelength
- high detector coverage
- combination of method (diffraction, SANS, imaging, ...)

Why the BEER instrument is proposed?

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- \textit{IN-SITU} testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

What is needed

- high neutron flux
- variable resolution and wavelength
- high detector coverage
- combination of method (diffraction, SANS, imaging, ...)

Why the BEER instrument is proposed?

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- \textit{IN-SITU} testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

What is needed

- high neutron flux
- variable resolution and wavelength
- high detector coverage
- combination of method (diffraction, SANS, imaging, ...)

Why the BEER instrument is proposed?

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- \textit{IN-SITU} testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

What is needed

- high neutron flux
- variable resolution and wavelength
- high detector coverage
- combination of method (diffraction, SANS, imaging, ...)

Why the BEER instrument is proposed?

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- \textit{IN-SITU} testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

What is needed

- high neutron flux
- variable resolution and wavelength
- high detector coverage
- combination of method (diffraction, SANS, imaging, ...)

Why the BEER instrument is proposed?
Science case
Why the BEER instrument is proposed?

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- *IN-SITU* testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

What is needed

- high neutron flux
- variable resolution and wavelength
- high detector coverage
- combination of method (diffraction, SANS, imaging, ...)
- *SAMPLE ENVIRONMENT*
Science case
Why the BEER instrument is proposed?

Scientific drivers & goals
- more COMPLEX materials
- MULTI-PHASE and composite materials
- IN-SITU testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

What is needed
- high neutron flux
- variable resolution and wavelength
- high detector coverage
- combination of method (diffraction, SANS, imaging, ...)
- SAMPLE ENVIRONMENT
- ...
Instrument modalities

What the BEER instrument should be able to do?

- *In-situ* simulation of thermo-mechanical processes
Instrument modalities
What the BEER instrument should be able to do?

- *In-situ* simulation of thermo-mechanical processes
- Study the processes to tailor the material properties for application needs
- To optimise thermo-mechanical treatment to reduce production cost
- Understand processes happening during material application
Instrument modalities
What the BEER instrument should be able to do?

- *In-situ* simulation of thermo-mechanical processes
 - Study the processes to tailor the material properties for application needs
 - To optimise thermo-mechanical treatment to reduce production cost
 - Understand processes happening during material application
Instrument modalities
What the BEER instrument should be able to do?

- Multi-phase and/or composite materials
Instrument modalities
What the BEER instrument should be able to do?

- Multi-phase and/or composite materials
- Resolve phases evolution together with microstructure changes
- Multi-scale characterisation
Instrument modalities
What the BEER instrument should be able to do?

- Multi-phase and/or composite materials
- Resolve phases evolution together with microstructure changes
- Multi-scale characterisation
Instrument modalities
What the BEER instrument should be able to do?

- *In-situ* texture or grain growth evolution
Instrument modalities
What the BEER instrument should be able to do?

- *In-situ* texture or grain growth evolution
- Fast strain scanning
Instrument modalities
What the BEER instrument should be able to do?

- In-situ texture or grain growth evolution
- Fast strain scanning
- Long-term experiments
Instrument modalities
What the BEER instrument should be able to do?

- *In-situ* texture or grain growth evolution
- Fast strain scanning
- Long-term experiments
• TG2 review passed on February 7, 2017
Instrument status
Current status of the BEER instrument

- TG2 review passed on February 7, 2017
 - defined and fixed scope
 - frozen reduced budget of 14.98 M€
 - work package schema NPI:HZG = 50:50%
Instrument status
Current status of the BEER instrument

- TG2 review passed on February 7, 2017
 - defined and fixed scope
 - frozen reduced budget of 14.98 M€
 - work package schema NPI:HZG = 50:50%
- running the *Phase 2 - Detail engineering design*
• TG2 review passed on February 7, 2017
 • defined and fixed scope
 • frozen reduced budget of 14.98 M€
 • work package schema NPI:HZG = 50:50%
• running the *Phase 2* - Detail engineering design
• expected final TG3 at the beginning of 2019
• TG2 review passed on February 7, 2017
 • defined and fixed scope
 • frozen reduced budget of 14.98 M€
 • work package schema NPI:HZG = 50:50%
• running the *Phase 2* - Detail engineering design
• expected final TG3 at the beginning of 2019
• start of installation end 2019 / beginning 2020
Instrument status
Current status of the BEER instrument

• TG2 review passed on February 7, 2017
 • defined and fixed scope
 • frozen reduced budget of 14.98 M€
 • work package schema NPI:HZG = 50:50%

• running the *Phase 2* - Detail engineering design
• expected final TG3 at the beginning of 2019
• start of installation end 2019 / beginning 2020
• beam on target Sep 2022
Current status of the BEER instrument

- TG2 review passed on February 7, 2017
 - defined and fixed scope
 - frozen reduced budget of 14.98 M€
 - work package schema NPI:HZG = 50:50%
- running the *Phase 2* - Detail engineering design
- expected final TG3 at the beginning of 2019
- start of installation end 2019 / beginning 2020
- beam on target Sep 2022
- start of hot commissioning 2023
Current status of the BEER instrument

- TG2 review passed on February 7, 2017
 - defined and fixed scope
 - frozen reduced budget of 14.98 M€
 - work package schema NPI:HZG = 50:50%
- running the Phase 2 - Detail engineering design
- expected final TG3 at the beginning of 2019
- start of installation end 2019 / beginning 2020
- beam on target Sep 2022
- start of hot commissioning 2023
- user program starts end 2023
Operational environment
BEER position on the ESS site
Operational environment
BEER position on the ESS site

- 158 m long instrument (distance from source to sample)
- neighbour instruments NMX (crystallography) and C-Spec (spectrometer)
- preparatory lab below control hutch
- SLIM lab for storage and long term experiments (20 m from cave)
BEER instrument layout
Description of the main parts of the BEER instrument
BEER instrument layout
Description of the main parts of the BEER instrument

Slide 11/16

- **Introduction**
- **Instrument teams**
- **Eng. materials**
- **Science case**
- **Modalities**

Current status

Instrument
- **Hall layout**
- **Description**
- **Performance**
- **Sample environment**

Summary
- **WP definition**
Description of the main parts of the BEER instrument
BEER instrument layout
Description of the main parts of the BEER instrument
BEER instrument layout
Description of the main parts of the BEER instrument
BEER instrument layout
Description of the main parts of the BEER instrument
Instrument at Day-one
Scope reduction and completion status of the BEER instrument

Reduced *Day-one* scope
Reduced *Day-one* scope

- only two 1 m² detectors at $\pm 90^\circ$ (resolution 2×5 mm)
Reduced *Day-one* scope

- only two 1 m² detectors at ±90° (resolution 2×5 mm)
- no SANS and imaging option
Instrument at Day-one
Scope reduction and completion status of the BEER instrument

Reduced *Day-one* scope
- only two 1 m\(^2\) detectors at ±90° (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
Reduced *Day-one* scope

- only two 1 m² detectors at ±90° (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
Reduced *Day-one* scope

- only two 1 m² detectors at ±90° (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system (10 → 5)
Instrument at Day-one
Scope reduction and completion status of the BEER instrument

Reduced *Day-one* scope
- only two 1 m² detectors at $\pm 90^\circ$ (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system (10 \rightarrow 5)
- no multi-channel focusing optics
Reduced *Day-one* scope

- only two 1 m² detectors at ±90° (resolution 2 × 5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system (10 → 5)
- no multi-channel focusing optics
- no sample environment in the instrument budget!
Reduced *Day-one* scope

- only two 1 m² detectors at ±90° (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system (10 → 5)
- no multi-channel focusing optics
- no sample environment in the instrument budget!
- *advanced deformation rig and dilatometer in pool*
Reduced *Day-one* scope

- only two 1 m2 detectors at $\pm 90^\circ$ (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system ($10 \rightarrow 5$)
- no multi-channel focusing optics
- no sample environment in the instrument budget!

For completion to *Full-scope* is needed
Reduced *Day-one* scope

- only two 1 m² detectors at ±90° (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system (10 → 5)
- no multi-channel focusing optics
- no sample environment in the instrument budget!
 - *advanced deformation rig and dilatometer in pool*

For completion to *Full-scope* is needed

- update of chopper system (+4 choppers)
Instrument at Day-one
Scope reduction and completion status of the BEER instrument

Reduced *Day-one* scope

- only two 1 m^2 detectors at $\pm 90^\circ$ (resolution $2 \times 5 \text{ mm}$)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system ($10 \rightarrow 5$)
- no multi-channel focusing optics
- no sample environment in the instrument budget!

advanced deformation rig and dilatometer in pool

For completion to *Full-scope* is needed

- update of chopper system (+4 choppers)
- enhance sample positioning
Reduced *Day-one* scope

- only two 1 m² detectors at $\pm 90^\circ$ (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system ($10 \rightarrow 5$)
- no multi-channel focusing optics
- no sample environment in the instrument budget!

advanced deformation rig and dilatometer in pool

For completion to *Full-scope* is needed

- update of chopper system (+4 choppers)
- enhance sample positioning
- increase of detector coverage (off & in plane)
Instrument at Day-one
Scope reduction and completion status of the BEER instrument

Reduced *Day-one* scope

- only two 1 m² detectors at ±90° (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system (10 → 5)
- no multi-channel focusing optics
- no sample environment in the instrument budget!

advanced deformation rig and dilatometer in pool

For completion to *Full-scope* is needed

- update of chopper system (+4 choppers)
- enhance sample positioning
- increase of detector coverage (off & in plane)
- ..., SE, SANS option, ...
Dashed line shows the extension of the resolution range by adding the 3rd chopper as suggested for the staging plan.
Sample environment
Examples of SE foreseen for the BEER instrument

BEER dedicated SE

- advanced deformation rigs
 - uni-axial deformation
 - max. load 60 kN
 - with furnace (1200°C)
 - vacuum chamber
Sample environment
Examples of SE foreseen for the BEER instrument

BEER dedicated SE
- advanced deformation rigs
- digital image correlation
Sample environment
Examples of SE foreseen for the BEER instrument

BEER dedicated SE
- advanced deformation rigs
- digital image correlation
- dilatometer
 - DSC unit
 - max. load 25 kN
 - heating rate (4000 K/s)
 - cooling rate (2500 K/s)
Sample environment
Examples of SE foreseen for the BEER instrument

BEER dedicated SE
- advanced deformation rigs
- digital image correlation
- dilatometer
- different welding machines
 - stir-welding
 - laser-welding
Sample environment
Examples of SE foreseen for the BEER instrument

BEER dedicated SE
- advanced deformation rigs
- digital image correlation
- dilatometer
- different welding machines
- Gleeble®
Sample environment
Examples of SE foreseen for the BEER instrument

BEER dedicated SE
- advanced deformation rigs
- digital image correlation
- dilatometer
- different welding machines
- Gleeble®
- advanced positioning
 - payload 2 t
 - x, y: ±110 mm
 - z: ±150 mm
 - payload 14 kg
 - repeatability: ±0.06 mm
Sample environment
Examples of SE foreseen for the BEER instrument

BEER dedicated SE
- advanced deformation rigs
- digital image correlation
- dilatometer
- different welding machines
- Gleeble
- advanced positioning

Pool SE
- furnaces
- cryostat
- cryo-furnaces
- ...
Work-packages
Definition and split of work-packages

NPI
- after-bunker optics
- safety shutter
- focusing optics
- guide shielding
- elevated floor
- cave & hutch
- transport platform

HZG
- in-monolith optics
- in-bunker guides
- choppers
- detectors
- monitors
- sample table
- hexapod, robot
Acknowledgment

THANK YOU FOR YOUR ATTENTION