Computational Tools for Neutron Crystallography

IKON15, Lund, September 2018

Paul Adams

Lawrence Berkeley Laboratory and Department of Bioengineering UC Berkeley

Growth of Neutron Crystallography

2011

2012

- Neutron crystallography has been challenging:
 - Large crystals
 - Few data collection facilities
 - Long data collection times
 - Sample deuteration
 - Limited neutron software/algorithms

Challenges with Neutron Data

- Building H, D or H/D in the model, including water or ligands
- Optimizing the fit of water (DOD) into density
- Fit of rotatable X-H/D bonds into density
- Fewer data, more parameters to refine individually (H/D ~50% of the atoms)
- Cancellation effects make X-H species poorly defined in density
- Occupancy refinement of H/D sites
- Data quality: typically low overall and resolution bin completeness

The Macromolecular Neutron Consortium

- Macromolecular Neutron Consortium (mnc.ornl.gov) is a collaboration between Lawrence Berkeley Lab and Oak Ridge National Lab:
 - Paul Langan, Vickie Lynch, Brendan Sullivan (ORNL), Marat Mustyakimov
 - Paul Adams, Pavel Afonine (LBNL)
 - Funded by NIH

- Goal is to create the computational tools to enable routine analysis of neutron diffraction data
- Initial developments made use of CNS, resulting in nCNS patches
- Current efforts are focused on Phenix

The Phenix Project

Lawrence Berkeley Laboratory

Automation of Structure Solution

Low

- Rigid body
- Group ADP
- Torsion angle constraints
- Simulated annealing

•NCS restraints (including automatic NCS determination and restraints generation)

- •TLS refinement
- Occupancies (individual or group, automatically constrained for alternate side chains)
- Anomalous scattering factor refinement (individual or group)
- Twinned refinement target
- •Refinement against X-ray and Neutron data

Pavel Afonine, Ralf Grosse-Kunstleve, Nat Echols, Jeff Headd, Nigel Moriarty, Marat Mustyakimov, Tom Terwilliger, Sasha Urzhumtsev, Peter Zwart

Acta Cryst. 2012, **D68**:352-367

Ultra-high

- Interatomic scatterers
- Unrestrained refinement
- Explicit hydrogens

Restrained coordinates

phenix.refine

Medium/High

- Restrained ADPs (iso/aniso)
- Automated water picking

Refinement with Neutron Data

- Similar to standard X-ray approach, with some key differences:
 - Addition of H or D to the model, including water or ligands
 - Addition of H and D as alternate conformations at exchangeable sites
 - Real space optimization of H/D positions w.r.t. density
 - Refinement of H/D atomic positions
 - Riding hydrogens are preferred at lower resolutions

Inform	mation from	n PDB	file header	Inform	ation	computed in p	henix.refine
PDB or NDB	Resolution (Å)	σ cutoff	R (work/free)	R (work/free)	H/D ratio	Data completeness	No. of reflections/atoms
code			(%)	(%)		(%)	
<u>1c57</u>	2.4-15.79		27.0/30.1	20.5/25.7	90/10	87	8604/3677
<u>2dxm</u>	2.1-8.0	1	19.7/26.0	18.1/23.6	88/12	65	21242/9317
<u>2efa</u>	2.7-80.0	3	21.6/29.1	20.2/27.0	85/15	93	2198/788
2gve	2.2-10.0	3	27.1/31.9	24.5/30.4	0/100	80	19619/6185

Joint X-ray/Neutron Refinement

- Refine a single model against multiple data sets simultaneously
 - Introduced by Sheldrick et. (1978), Coppens et al. (1981)
 - Applied to macromolecules by Wlodawer & Sjölin (1982) and Wlodawer et al. (1982, 1989)
- Implemented in nCNS (Mustyakimov et al., 2009)
- Implemented in Phenix (Afonine et al., 2010)
- Refinement Target:
 - $T_{\text{Joint}} = w_{\text{xc}} E_{\text{Xray}} + w_{\text{nc}} E_{\text{Neutron}} + w_{\text{c}} E_{\text{Geom}}$

Joint X-ray/Neutron Refinement

 Tests with artificial and real data showed that both X-ray and neutron structures could be improved, with typically a larger effect on neutron derived models

Joint X-ray/Neutron Refinement

 Joint refinement of a model against both X-ray and Neutron data improves density maps

Neutron refinement alone

Neutron (Joint refinement)

PDE	3 ID	Publis	shed	p	henix.refine F	R-work / R-fre	е
		R-work	/ R-free	Joint	X + N	X-ray only	Neutron
Х	N	Х	N	Х	N		only
1iu5	1iu6	18.7 / 20.3	19.4 / 25.4	13.1 / 16.9	15.2 / 21.0	12.7 / 17.2	19.1 / 21.6
1woe	1v9g	17.6 / 20.6	22.2 / 29.4	15.0 / 18.5	23.4 / 26.7	15.9 / 18.7	26.7 / 31.3
2er7	1gkt	14.2 /-	23.5 / 27.4	12.1 / 14.8	21.5 / 24.7	12.3 / 15.2	19.9 / 25.9

Adams PD, Mustyakimov M, Afonine PV, Langan P: Generalized X-ray and neutron crystallographic analysis: more accurate and complete structures for biological macromolecules. Acta Cryst. 2009, D65:567-573.

Enabling Joint Refinement

• The Phenix GUI provides easy access to joint refinement

	PHENIX Preferences Phenix Phen
	Configure Refine_2
	Input data Refinement settings Output
	Input files
	File path Format Data type Q. /Users/pdadams/Work/Scratch/phenix/rnase-s-tutorial/rnase-s/rnase25 ccp4_mtz X-ray data Q. /Users/pdadams/Work/Scratch/phenix/rnase-s-tutorial/rnase-s/rnase-s PDB model
X-ray	+ - Modify file data type Space group: P 21 21 21 Unit cell: 64.897 78.323 38.792 90.000 90.000 90.000
data 📉	
	X-ray data and experimental phases
	Data labels : FNAT,SIGFNAT,merged 4 R-free label : 4 Test flag value :
	High resolution : Å Low resolution : Å Phase labels :
Neutron	Options
data	Neutron data
Uutu	Neutron data
	Data labels :
	High resolution : Å Low resolution : Å Options
	Idle Project: rnase-s_pdadams
	Phenix

•

BE

Neutron structure refinement is increasingly making use of neutron-specific tools

Challenges of Refining a Single Model

- Requires comparable datasets collected from isomorphous crystals and at the same temperature
- Structures still can have local differences in solvent structure, rotameric states
- Works well if data sets are comparable but relative weighting of E_{XRAY} and E_{NEUTRON} is challenging if data sets are very different (e.g. 3Å neutron data, and IÅ X-ray data)

Coupled Refinement

- Refine two separate models against the respective data sets
 - Eliminates the requirement for highly isomorphous crystals collected at the same temperature
- Use the higher quality/resolution structure as a source of information to inform the other refinement
 - Allows for structural variability and differences in water structure
 - Naturally accounts for differences in X-H/X-D bonds lengths

Enhanced Neutron Structure Refinement

- Initial tests suggest that use of the X-ray structure as a reference can produce improved neutron models
 - It should be noted that refinement against neutron data alone is better than in the past as the algorithms have improved

Coupled Refinement Developments

- Refinement workflows that are planned for the new neutron/X-ray refinement framework:
 - Given best possible refined X-ray model, use it as a source of reference restraints for refinement of neutron structure against neutron data only.
 - Refine X-ray and neutron models in one combined refinement run:
 - Use X-ray model as a source of restraints for neutron refinement
 - Use neutron model to adjust rotatable hydrogens in X-ray model
 - Relies on new riding hydrogen model parameterization

Going Beyond Structure Refinement

- Refinement is one part of the problem
- As with X-ray crystallography, structure completion remains a significant bottleneck
 - We need to address solvent building (especially important for neutron data with rich information about waters)
- How can we make the best maps for interpretation?
- Structure deposition remains a serious problem, with many mistakes in the wwPDB

Better Omit Maps

• The bulk solvent model can obscure density for omitted regions in traditional omit maps.

Liebschner D, et al: Polder maps: improving OMIT maps by excluding bulk solvent. Acta Cryst. 2017, **D73**:148-157

Phenix

Structure Deposition

- Tools for deposition of neutron structures lag X-ray
- Depositing joint X-ray/neutron structures has been challenging (I+ years to negotiate a format for phenix.refine with wwPDB)
- The original PDB format anticipated one model, one data set (X-ray data)
- The PDB format will be replaced with mmCIF
 - Allows for a much richer description of experiments, data and model
 - Deposition of joint refinements with multiple data sets
 - Deposition of coupled refinements with linked models
- Phenix now reads and writes mmCIF for many tasks (e.g. phenix.refine)

Liebschner et al: Evaluation of models determined by neutron diffraction and proposed improvements to their validation and deposition. *Acta Cryst.* 2018, **D74**:800-813

mmCIF Example

										ר
лтом	1 N	<u>лерт 1</u>	۸ <u>11</u> 2	11 10 159	2 20 129	1 0 0	30 02)		 М
			A 11.J.	11 19.130	10 1/18	1 00	20.12)		
	2 CA 3 C		7 0 8'	72 17 15	19.440	1 00	29.12			C C
	3 C		A 9.0	12 17.13	19.550	1 00	20.73)		
	4 U 5 CD		A 0.0.	11 10.032	19.172	1.00	21./1			0
ATOM	5 CB	ASP L I		19.08	17.973	1.00	38.70			
	0 CG 7 OD1	ASPL I	A 0./(19.33	1 10 160	1.00				
				11 19.52	16.109	1.00	44.JI	-		0
ATOM	6 UD2	ASP L I	A 0.00	51 19.576	5 10.1/1	1.00	50.05			
1 A	11.31147	19.15776	20.12829	1.000 3	0.02111	N ?	A ?	1	1	
1 A	10.10373	18.68105	19.44836	1.000 2	9.12464	C ?	A ?	1	1	
1 A	9.87214	17.15878	19.55617	1.000 2	6.73154	C ?	A ?	1	1	
1 A	8.81111	16.65235	19.17214	1.000 2	1.71081	0?	A ?	1	1	
1 A	10.14403	19.08618	17.97261	1.000 3	8.70228	C ?	A ?	1	1	
1 A	8.75963	19.33936	17.39469	1.000 4	4.90010	C ?	A ?	1	1	
1 A	7.77712	19.32440	18.16915	1.000 4	4.50718	0?	A ?	1	1	
1 A	8.66147	19.57786	16.17106	1.000 5	0.05253	0?	A ?	1	1	
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 1 N ATOM 2 CA ATOM 3 C ATOM 3 C ATOM 4 O ATOM 5 CB ATOM 6 CG ATOM 6 CG ATOM 7 OD1 ATOM 8 OD2 1 A 10.10373 1 A 9.87214 1 A 8.81111 1 A 10.14403 1 A 8.75963 1 A 7.77712 1 A 8.66147	ATOM 1 N ASP L 1. ATOM 2 CA ASP L 1. ATOM 3 C ASP L 1. ATOM 4 O ASP L 1. ATOM 4 O ASP L 1. ATOM 5 CB ASP L 1. ATOM 6 CG ASP L 1. ATOM 6 CG ASP L 1. ATOM 7 OD1 ASP L 1. ATOM 8 OD2 ASP L 1. ATOM 9.87214 17.15878 1 A 1 A 8.75963 19.33936 1 A 1 A 8.66147 19.577	ATOM 1 N ASP L 1A 11.33 ATOM 2 CA ASP L 1A 10.10 ATOM 3 C ASP L 1A 9.83 ATOM 3 C ASP L 1A 9.83 ATOM 4 O ASP L 1A 9.83 ATOM 5 CB ASP L 1A 10.14 ATOM 6 CG ASP L 1A 8.70 ATOM 6 CG ASP L 1A 10.14 ATOM 6 CG ASP L 1A 7.77 ATOM 7 OD1 ASP L 1A 7.77 ATOM 8 OD2 ASP L 1A 8.60 1 A 10.10373 18.68105 19.44836 1 A 9.87214 17.15878 19.55617 1 A 8.81111 16.65235 19.17214 1 A 8.81111 16.65235 19.17214 1 A 8.75963	ATOM 1 N ASP L 1A 11.311 19.158 ATOM 2 CA ASP L 1A 10.104 18.68 ATOM 3 C ASP L 1A 9.872 17.159 ATOM 4 O ASP L 1A 9.872 17.159 ATOM 4 O ASP L 1A 10.144 19.086 ATOM 5 CB ASP L 1A 10.144 19.339 ATOM 6 CG ASP L 1A 8.760 19.339 ATOM 7 OD1 ASP L 1A 7.777 19.324 ATOM 8 OD2 ASP L 1A 8.661 19.578 ATOM 8 OD2 ASP L 1A 8.661 19.578 1 A 10.10373 18.68105 19.44836 1.000 2 1 A 9.87214 17.15878 19.55617 1.000 2 1 A 8.81111 16.65235 19.17214 1.000 2<	ATOM 1 N ASP L 1A 11.311 19.158 20.128 ATOM 2 CA ASP L 1A 10.104 18.681 19.448 ATOM 3 C ASP L 1A 9.872 17.159 19.556 ATOM 4 0 ASP L 1A 8.811 16.652 19.172 ATOM 5 CB ASP L 1A 10.144 19.086 17.973 ATOM 5 CG ASP L 1A 10.144 19.086 17.973 ATOM 6 CG ASP L 1A 7.777 19.324 18.169 ATOM 7 OD1 ASP L 1A 7.777 19.324 18.169 ATOM 8 OD2 ASP L 1A 8.661 19.5778 16.171 1 A 10.10373 18.68105 19.44836 1.000 29.12464 1 1 A 9.87214 17.15878 19.55617 1.000 26.73154 1 1 A 10	ATOM 1 N ASP L 1A 11.311 19.158 20.128 1.00 ATOM 2 CA ASP L 1A 10.104 18.681 19.448 1.00 ATOM 3 C ASP L 1A 9.872 17.159 19.556 1.00 ATOM 4 O ASP L 1A 8.811 16.652 19.172 1.00 ATOM 5 CB ASP L 1A 10.144 19.086 17.973 1.00 ATOM 6 CG ASP L 1A 10.144 19.086 17.973 1.00 ATOM 6 CG ASP L 1A 7.777 19.324 18.169 1.00 ATOM 7 OD1 ASP L 1A 7.777 19.324 16.171 1.00 ATOM 8 OD2 ASP L 1A 8.661 19.578 16.171 1.00 A 10.10373 18.68105 19.44836 1.000 20.73154 C ? 1 A 8.7214 17.15878 19.55617	ATOM 1 N ASP L 1A 11.311 19.158 20.128 1.00 30.02 ATOM 2 CA ASP L 1A 10.104 18.681 19.448 1.00 29.12 ATOM 3 C ASP L 1A 9.872 17.159 19.556 1.00 26.73 ATOM 4 O ASP L 1A 8.811 16.652 19.172 1.00 21.71 ATOM 5 CB ASP L 1A 8.811 16.652 19.172 1.00 24.73 ATOM 5 CB ASP L 1A 10.144 19.086 17.973 1.00 38.70 ATOM 6 CG ASP L 1A 7.777 19.324 18.169 1.00 44.90 ATOM 7 OD1 ASP L 1A 7.777 19.324 18.169 1.00 50.05 1 A 10.10373 18.68105 19.44836 1.000 29.12464 C 2 A 2 1 A 1.014403<	ATOM 1 N ASP L 1A 11.311 19.158 20.128 1.00 30.02 ATOM 2 CA ASP L 1A 10.104 18.681 19.448 1.00 29.12 ATOM 3 C ASP L 1A 9.872 17.159 19.556 1.00 26.73 ATOM 4 O ASP L 1A 8.811 16.652 19.172 1.00 21.71 ATOM 5 CB ASP L 1A 8.811 16.652 19.172 1.00 21.71 ATOM 5 CB ASP L 1A 10.144 19.086 17.973 1.00 38.70 ATOM 6 CG ASP L 1A 7.777 19.324 18.169 1.00 44.90 ATOM 7 OD1 ASP L 1A 7.777 19.324 18.169 1.00 44.51 ATOM 8 OD2 ASP L 1A 8.661 19.578 16.171 1.00 50.05 1 A 10.10373	ATOM 1 N ASP L 1A 11.311 19.158 20.128 1.00 30.02 ATOM 2 CA ASP L 1A 10.104 18.681 19.448 1.00 29.12 ATOM 3 C ASP L 1A 9.872 17.159 19.556 1.00 26.73 ATOM 4 O ASP L 1A 8.811 16.652 19.172 1.00 21.71 ATOM 5 CB ASP L 1A 10.144 19.086 17.973 1.00 38.70 ATOM 6 CG ASP L 1A 7.777 19.324 18.169 1.00 44.90 ATOM 7 OD1 ASP L 1A 7.777 19.324 18.169 1.00 44.51 ATOM 8 OD2 ASP L 1A 8.661 19.578 16.171 1.00 50.05 1 1 A 10.10373 18.68105 19.4836 1.000 29.12464 C 2 A 2 1 1

• Efforts underway to represent diffraction data in mmCIF

Phenix

Richard Gildea (LBNL)

Phenix - a Structural Biology Hub

BERKELEY LAB

Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH: *PHENIX*: a comprehensive Python-based system for macromolecular structure solution. *Acta Cryst.* 2010, **D66**:213-221.

Recent Developments

- Automated structure solution with weak anomalous data
- Translational NCS corrections in SAD phasing
- MR_Rosetta and morphing for rescuing poor MR solutions
- Translational NCS corrections in MR
- New Rosetta methods for RNA rebuilding (ERRASER)
- Automated ion placement in refinement
- Automated ligand pipeline
- DIALS included in Phenix distribution
- Support for mmCIF format (for structure deposition)
- Video Tutorials

- Feature Enhanced Maps to improve interpretability
- Polder maps for better ligand density
- Ensemble refinement to understand dynamics and structural variability
- Low resolution refinement algorithms:
 - Rosetta refinement
 - Reference model
 - Torsion NCS
 - Structure restraints
- Automated sharpening and model building for cryo-EM maps
- Real space refinement (for X-ray and cryo-EM)
- New validation methods for cryo-EM models

Phenix and cctbx

- Open source
- General scientific tools (scitbx)
- Input/output, various formats (iotbx)
- Crystallographic tools (cctbx)
- Macromolecular-specific (mmtbx)
- Installation, testing (libtbx)

Python: 400,000 C++: 250,000

- Available source
- Graphic User Interface
- End-user programs
- Pipelines
- Some high-level algorithms

Python: 300,000

Computational Crystallography Toolbox Philosophy

- Fundamental crystallographic algorithms are required to build new software
- These should be available as a library
- Using these algorithms in the context of an interpreted language is the most efficient way to develop new software, and build automated "pipelines"
- Fundamental algorithms should be as general as possible
- Regression tests for every component

The Computational Crystallography Toolbox

- Is an evolving C++/Python library of fundamental algorithms for computational crystallography (and more)
- Stable and tested
 - Phenix suite relies heavily on cctbx
 - Basis for Olex²
 - Platform for DIALS data processing
- Contains a variety of tools for IO, model manipulation, refinement, restraints, etc
- Open source project on GitHub (https://github.com/cctbx)
 - ensures continued availability
 - rapid development
 - easy contribution by all developers

Olex²

DIALS

Home About Installation Documentation Tutorials How-to Workshops Publications Links License

DIALS: Diffraction Integration for Advanced Light Sources

X-ray crystallography for structural biology has benefited greatly from a number of advances in recent years including high performance pixel array detectors, new beamlines capable of delivering micron and sub-micron focus and new light sources such as X-FELs. The DIALS project is a collaborative endeavour to develop new diffraction integration software to meet the data analysis requirements presented by these recent advances. There are three end goals: to develop an extensible framework for the development of algorithms to analyse X-ray diffraction data; the implementation of algorithms within this framework and finally a set of user facing tools using these algorithms to allow integration of data from diffraction experiments on synchrotron and free electron sources.

Contact

For feature requests, bug reports or any other information, please contact the DIALS developers at dials-support@lists.sourceforge.net. For wider discussion about the project you may sign up to the dials-general mailing list.

The Computational Crystallography Toolbox

A lot of functionality is written in C++ and exposed through Python

- Custom-made types for arrays, matrices, vectors, coordinates and much more with implemented operations with them
- Classes to work with symmetry, unit cell, structure factors
- Minimizers, FFT
- Restraints
- PDB, mmCIF, MTZ and other parsers
- Containers for structural and experimental information

Choice of implementation languages in 2000

Programmer Efficiency

Desired features:

- Maintainability
- Reusability
- Modularity
- Python:
 - +Very high-level programming, OOP
 - +Easy to use
 - +Fast development cycle (no compilation)
 - -Too slow for certain tasks
- C++:
 - +High-level or medium-level programming, OOP
 - Hard to use (many arcane details)
 - -Slow development cycle (needs compilation)
 - +Much faster than Python

Performance

Development workflow in hybrid environment

It is more important to obtain a working implementation as fast as possible to be able to discard unsuccessful ideas. Better to use Python.

It is more important to be able speed up the initial implementation if needed. Ability to easily switch to C++ when needed is crucial.

Neither Python nor C++ alone can provide both fast initial implementation and good opportunities for speeding up later.

Boost.Python connects C++ and Python

- Mature and flexible library to bridge C++ and Python code
- Supports Python 3
- C++ objects are accessed directly, without making a copy
- C++ objects can be extended with Python-coded methods
- Supports many compilers (including very old ones)
- Possible to wrap CUDA code

Abrahams D, Grosse-Kunstleve RW: Building Hybrid Systems with Boost.Python. C/C++ Users Journal 2003, **21**:29-36.

Idea Implementation in Practice

In many cases the performance of Python is sufficient

If the performance of C++ is necessary for optimizing part of program:

Time spent on API is not lost – whole class could be rewritten in C++ with exactly the same API

Time spent on writing testing is not lost, the same tests will work

Often only one method of a class needs to be rewritten in C++, the rest remains in Python

cctbx module

- uctbx Unit cells
- sgtbx Space groups
- miller Structure factor algebra incl. selections and binning
- adptbx Atomic anisotropic displacement parameters
- eltbx Scattering factors, ionic radii, etc.
- xray Structure factor toolbox incl. calc. of gradients
- mintbx Minimization toolbox
- dmtbx triplet generation for direct methods
- geometry_restraints bonds, angles, etc.
- Euclidean model matching
- Generic map handling algorithms

Toolbox

File Formats

- The cctbx supports a number of established input/ output formats
 - iotbx:
 - MTZ, CNS, XDS, SHELX, d*Trek, scalepack ...
 - iotbx.cif
 - (mm)CIF
- The working format, isn't a format:
 - Object serialization using the Python pickle mechanism

libtbx Module

- Thin wrapper around SCons (<500 lines of Python code)
 - python \$HOME/libtbx/configure.py scitbx cctbx
 - source setpaths.csh
 - libtbx_scons –j 12.
- Scons Software Construction Tool
 - Pure Python
 - No new syntax to learn
 - Completely replaces make
 - Uses MD5 check-sums instead of time-stamps
 - Check-sums include the compiler/linker options
 - Automatic global dependency analysis
 - Optimal utilization of multi-CPU machines (parallel compilation)

scitbx Module

- scitbx/array_family Array family for scientific applications
- scitbx/fftpack Fast Fourier transform toolbox
 - Port of FFTPACK (Fortran)
 - Pure, generic C++
- scitbx/lbfgs LBFGS conjugate gradient minimizer
 - Port of Fortran LBFGS
 - Pure, generic C++ incl. Exception Handling

scitbx array family

- Comprehensive and uniform array family:
 - Selection of memory management models
 - Types: tiny, small, shared
 - Access scheme = parameter
 - Type: versa
 - Algebras (+,-,*,/,sin,floor,etc.)
 - Python: from scitbx.array_family import flex

cctbx.github.io

CCTBX Developer documentation »
CCTBX Developer documentation » Table Of Contents Computational Crystallography Toolbox • Welcome to CCTBX's documentation! • High level organization • libtbx • boost_adaptbx • scitbx • cctbx • iotbx • cctbx • iotbx • mmtbx • xfel • smtbx • dxtbx • Other • Tour • Tutorials • Newsletter articles and examples • Installation • Reference Documentation • Links • Acknowledgments • Contact • Indices and tables Next topic Installation overview Acknow source Quick search

BERKELEY LAB

Active Development

Contributing to the cctbx

- Contributors are actively encouraged
 - Discipline is required if changes are to core code (other packages need to be functional)
- Github provides mechanisms for code management and requests for changes
- There is guidance for developers:
 - https://github.com/cctbx/cctbx_project/wiki/cctbx-Developer-Guidance
- There are ground rules for contributing:
 - https://github.com/cctbx/cctbx_project/wiki/cctbx-contributorsguide

Conclusions

- There has been good progress in developing tools for neutron crystallography
 - But there is still much to be done
- New facilities can provide environments for structure solution and data curation
 - Neutron crystallography needs accurate capture of metadata for deposition
- The cctbx provides many tools for data analysis, structure solution and data management
- The cctbx has long term support and should provide a solid platform for future developments
- Don't reinvent the wheel

Acknowledgments

Lawrence Berkeley Laboratory

 <u>Pavel Afonine</u>, Youval Dar, <u>Nat Echols</u>, <u>Jeff Headd</u>, Richard Gildea, Ralf Grosse-Kunstleve, <u>Dorothee</u> <u>Liebschner</u>, Nigel Moriarty, Nader Morshed, Billy Poon, Ian Rees, Nicholas Sauter, Oleg Sobolev, Peter Zwart

Los Alamos National Laboratory

Tom Terwilliger, Li-Wei Hung

Cambridge University

 Randy Read, Airlie McCoy, Tristan Croll, Laurent Storoni, Gabor Bunkoczi, Robert Oeffner

Duke University

- Jane Richardson & David Richardson, Ian Davis, Vincent Chen, Jeff Headd, Christopher Williams, Bryan Arendall, Laura Murray, Gary Kapral, Dan Keedy, Swati Jain, Bradley Hintze, Lindsay Deis, Lizbeth Videau
- University of Washington
 - Frank DiMaio, David Baker

Oak Ridge National Laboratory

 Vickie Lynch, Brendan Sullivan, Marat Mustyakimov, Paul Langan

• Others

- Alexandre Urzhumtsev & Vladimir Lunin
- Garib Murshudov & Alexi Vagin
- Kevin Cowtan, Paul Emsley, Bernhard Lohkamp
- David Abrahams
- PHENIX Testers & Users

Funding:

- NIH/NIGMS:
 - P01GM063210, P50GM062412, P01GM064692, R01GM071939
- Lawrence Berkeley Laboratory
- PHENIX Industrial Consortium

