

workshop on single crystal diffraction IKON15

DATA FOR DREAM

Wednesday, September 12th, Lund

F. Porcher

DREAM OVERVIEW

DREAM's SCIENCE CASE

- Powder diffraction
- PDF Nano.
- Single crystal diffraction
- Diffuse scattering

Polarized SXD → Magic Very large cells -> NMX

SXD on DREAM :

- Weakest effects (magnetic/nuclear) orbital ordering charge ordering distortion magnetic exchange
 Anisotropic excitations (P, H, E,...)
- **Epitaxial systems ?**
- ???

DREAM PHYSICAL SETUP IN 3 SLIDES

Diffraction Resolved by Energy and Angle Measurement

DREAM PHYSICAL SETUP IN 3 SLIDES

Diffraction Resolved by Energy and Angle Measurement

Detector config.				Day one	Full scope			
Detector banks	$\Delta 2\Theta$	$\Delta \phi$	ΔL	dΩ (sr)	dΩ (sr)			
HR Forward 0.6°-12°	< 0.1°	~0.1°	20mm	0	0.14			
Forward 12° - 45°	0.32°	~0.5°	16.4-19.4mm	0.29 (60°)	1.30 (270°)			
Mantle 45° - 135°	0.29°	0.53°	5.4mm	0.77 (30°)	2.23 (91°)			
Backward 135° -168°	0.32 °	~0.5°	16.4-19.4mm	0.61 (132°)	1.30 (270°)			
HR Backward > 168°	< 0.1°	~0.1°	7-10mm	0.14	0.14			
Total coverage				1.81 (35%)	5.11 (100%)			

Geometry

Voxels with variable size Distorsion Binning

DREAM PHYSICAL SETUP IN 3 SLIDES

Diffraction Resolved by **Energy** and Angle Measurement

RAMP-UP OF DATA ON DREAM

HC - SOUP :	coverage 1.81 sr - accelerator power 0.5 MW	
Full Detector :	coverage 5.11 sr - accelerator power 2 MW	
Complete Scope:	coverage 5.11 sr - accelerator power 5 MW	

Voxels:

HC - SOUP (Reduced config.): ~ 762.000 Full detector - Complete Scope : ~ 2.167.000

Counting Rates:

HC - SOUP : ~ 2 660 000 n/s Full Detector : ~ 30 000 000 n/s *Complete Scope :~ 75 000 000 n/s*

Estimated typical event rates (for single-crystal peaks) :

HC - SOUP : $\lesssim 0,18$ Gbit/sFull Detector : $\lesssim 2$ Gbit/sComplete Scope : $\lesssim 5$ Gbit/s

PSC settings → Various configurations from high-intensity to high-resolution mode Wavelength Frame Multiplication (WFM)

Hot Commissioning : data corrections, instrument functions, tools

Data manipulation in spectrometer space

Detector representation + selection of sectors 20, Space projections (2 θ , ω , ϕ , Tof, time(*in situ*), T, H...)

Already → Adap H...

Already in Mantid Adaptation for CC (test + ergonomy)

Correction of detectors electronic efficiency + distortion Correction of beam intensity variation /monitor WFM mode handling/stitching

Easy configuration of excluded zones Excluded zones » // Sample Environment Some in Mantid → Adaptation for HC

In Mantid ?

Adaptation for UP

CC : Cold commissioning HC : Hot Commissionning UP : User Program

Peak search – Indexing –Reciprocal space

Peak search

- I/noise threshold
- LFM (Fourier)
- Manual option ???

Indexing

- Cell limits + FFT (reciprocal space)
- Cell limits + Duisenberg approach (direct space)
- Known cell + few peaks
- Import UB (Definitions !)

Reciprocal space

Nr -----

Handling of multiple crystals ?

• Layers, Rows, Difference,

- Polycrystal (1-3 components)
- Twinned crystal
- Epitaxial growth

Incommensurate case (mag./nuc.)

Steller *et al.* J. Appl. Cryst. (1997). 30, 1036-1040. Duisenberg, J. Appl. Cryst. (1992). 25, 92-96. Known cell from XRD

+ manual peak assignment?

Reciprocal space mapping

Hand assignment of peaks

Handling of multiple cells

DIRAX : Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92±96 BRUKER : Sparks, R. A. (1999). GEMINI. Bruker AXS, Madison, Wisconsin, USA.

An example from last week (CYCLOPS@ILL + ESMERALDA LAUE SUITE)

Twin law from the 2 UBsTL is th(Oxford Crysalis)TL=UB:

UM SARRAY 0 -0.00240 0.01006 0.03419 -0.00319 -0.03378 0.01005 0.05291 -0.00158 0.00275 13.37086 20.10458 19.84878 89.9989 90.9448 90.0070 5334.93 TL is the matrix for the TWIN card in SHELXL provided it describes the comp 1 to comp N transf. TL=UB1-1*UB2: -1.0000 -0.0001 -0.0004 0.0002 -1.0002 -0.0004 0.0446 0.0001 0.9999 det 1.000087 Rot= 179.9919 deg around -0.0021 -0.0006 1.0000 (rec) 0.0164 -0.0001 0.9999 (dir)

Peak integration (Standard 3D single crystal)

Integration at HKL calculated position :

- (spherical, cylindrical, elliptic)
 (spherical, cylindrical, elliptic)
- Intensity-based (2D fitting : Seed-skewness, Lehman-Larsen)
- Learnt profile (area-averaged, intensity-averaged, profile function)

Background substraction

Standard deviations on Bragg intensities (« sigmas »)

(Shoebox) + 2D fitting integration already in Mantid Adaptation for HC

Stargazer (TOF adaptation of Denzo, MosFLM...) SCIENTIFIC **REPORTS** Application of profile fitting OPEN method to neutron time-of-flight

Ē 30 ci 25

Weak peaks /Strong peaks (supercell, mag.) Weak peak / High Background (H) Irregular background (SE, dif. streaks) **Overlapping**

protein single crystal diffraction Received: 02 August 2016 data collected at the iBIX Accepted: 17 October 2016 Published: 01 December 2016 Naomine Yano¹, Taro Yamada¹, Takaaki Hosoya^{1,2}, Takashi Ohhara³, Ichiro Tanaka^{1,2} & Katsuhiro Kusaka

Peak integration : Incommensurate – Twins – Multiple crystals

Indexing h k l m + qvec $(n_1a^* + n_2b^* + n_3c^*)$

Limited overlap (neglected)

- 0 < m < 4 e.g.
- Extinction rules (superspace group)

Not in Mantid → Adaptation for HC-UP...

Indexing h1 k1 l1 / h2 k2 l2 /... domains

Variable overlap

- Complete
- Partial
- None

Not in Mantid Adaptation for UP...

Normalizations – Corrections – Bragg intensities...

Least square optimization : Laue averaging ?

From Esmeralda Laue Suite – Laue Intensity (http://lauesuite.com/)

OUTPUT FILES

Diffraction data

3D

 SHELX hklF4 Format h k I F2(HKL) scale t1 t2 t3 t4 t5 t6

Superspace 4D, 5D..

 SHELX hklF4 Format h k l m (n...) F2(HKL) scale t1 t2 t3 t4 t5 t6

Twins, Overlapped

 SHELX hklF5 Format h k I F2(HKL) domain/overlap flag

w/o scale factor, direction cosines

JANA2006, SHELX, FULLPROF,...

Cell parameters / UB-Matrix

Homogene XYZ referentiel at ESS Transformation between definitions Export tools

DREAM TIMELINE

•2017-2018: Final Design Development
•2018-2023: Construction & Installation & Cold Commissioning
•2023-2023: Hot Commissioning (Friendly Users)
•2023 (end): General User Operations

HKLF5 file format for twins

Warning : Indices refers to twin operation (not only twin law)

h	k	- 1	compo	onent (assuming point group mmm)		•	•	•	•	•	•	•	•	•	
1	-2	3	1		•	•	•	•	•	•	•	•	•	•	
-1_	2	-3	1	equivalent singles	•	•	•	•	•	•	۰	•	•	•	
-1	2	-3	2	not equivalent to the above singles	•		•	•		•		•	•		
-1	-2	-3	-2		•		•	•	•	•	•	•	8		
- <u>2</u>		4	$$ $\frac{1}{2}$	equivalent groups	•	•	•	•	۰	•	•	•	•	•	•
-2	2	-3	-2			•		•	•	•	•	•		•	
	$-\frac{1}{1}$				•	•	•	•	•	•	•	•	•	•	
1	-2	-3	-3	not equivalent to the other groups shown here											
-1	1	2	1												

- DREAM shall enable data collection up to a Q_{max} of 25 Å⁻¹. 1.
- DREAM shall enable data collection down to a Q_{min} of 0.2 Å⁻¹ (the upgrade design will allow for $Q_{min} = 0.01$ Å⁻¹). 2.
- 3. DREAM shall provide a flexible choice between the high resolution and high intensity by pulse shaping within two orders of magnitude from ~10⁻² ms to ~ms.
 - DREAM should deliver data for samples as small as 1 mm³, in high intensity mode within 30 minutes.
- **DREAM** shall deliver a best resolution of $\Delta d = 0.00035(10)$ Å near backscattering.
- DREAM shall enable data collection for samples as small as 10 mm³ with best resolution.
- 4. 5. 6. 7. DREAM shall be able to detect structural changes with a time resolution of 10 ms for samples as large as 0.5 cm³.
- **DREAM** shall enable TOF Laue single crystal measurements. 8.
- DREAM shall provide the infrastructure to support fast in-situ measurements and quick 9. user turnover.
- 10. DREAM should provide user community with the wide range of generic and instrument-specific sample environment within its upgrade path.
- 11. DREAM should reduce the sample environment turnaround time as much as reasonable achievable.
- 12. DREAM shall be compatible with high magnetic field sample environments.