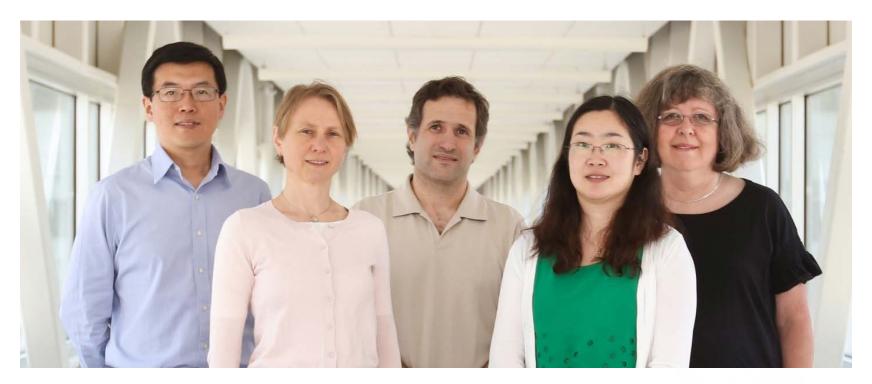

TOPAZ **Data Reduction & Analysis**

Xiaoping Wang

Neutron Scattering Division Oak Ridge National Laboratory

> Single Crystal Diffraction Workshop DMSC/ESS, Lund Sept 12, 2018



NEUTRON

National Laboratory

ORNL is managed by UT-Battelle for the US Department of Energy

The SNS TOPAZ Team

Xiaoping Wang, Christina Hoffmann, António M. dos Santos, Helen He, Vickie Lynch Left to right

neutrons.ornl.gov/topaz

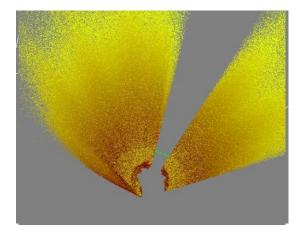
Neutron single crystal instruments at ORNL

http://neutrons.ornl.gov/instruments

HIFR

- HB-3A Four-Circle Diffractometer
- CG-4D Imagine Laue Diffractometer

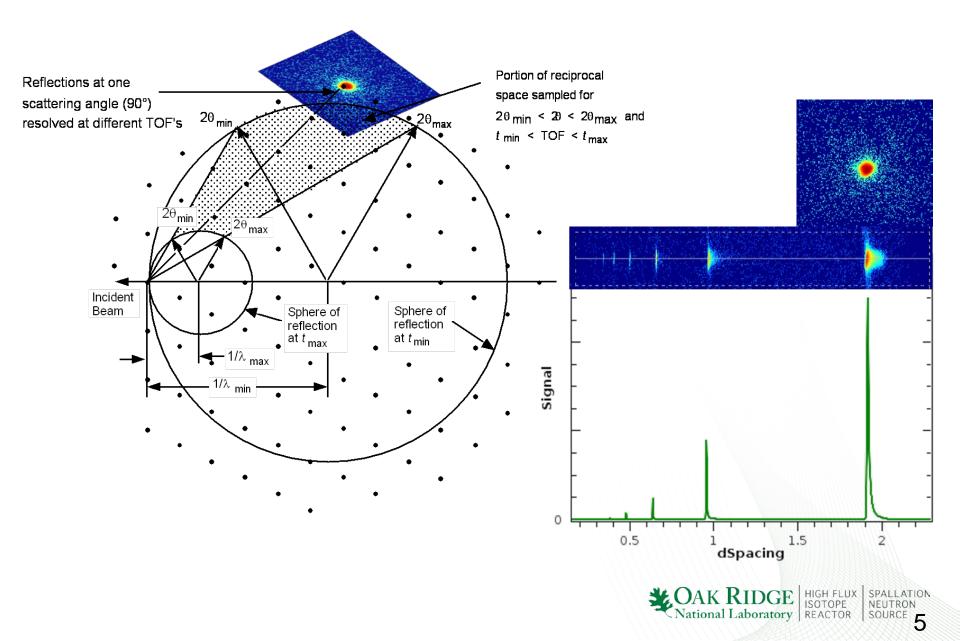

SNS

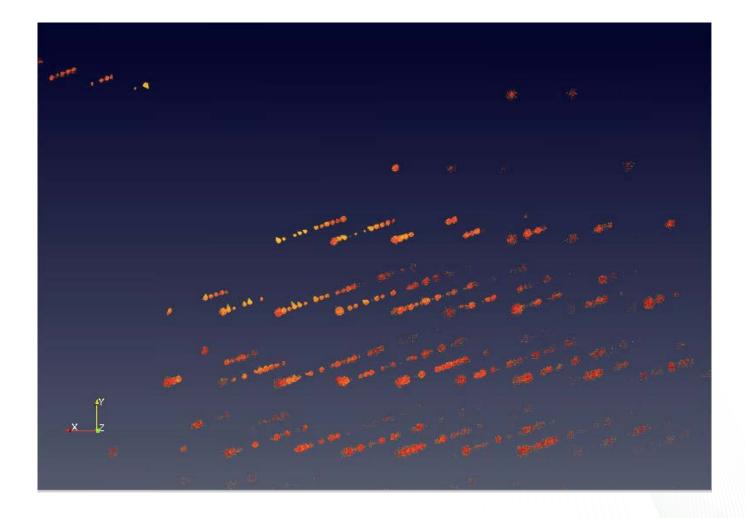

- **BL-3 SNAP** Spallation Neutrons and Pressure Diffractometer
- BL-9 CORELLI Elastic Diffuse Scattering Spectrometer
- BL-11B ManDi Macromolecular Neutron Diffractometer
- BL-12 TOPAZ Single-Crystal Diffractometer



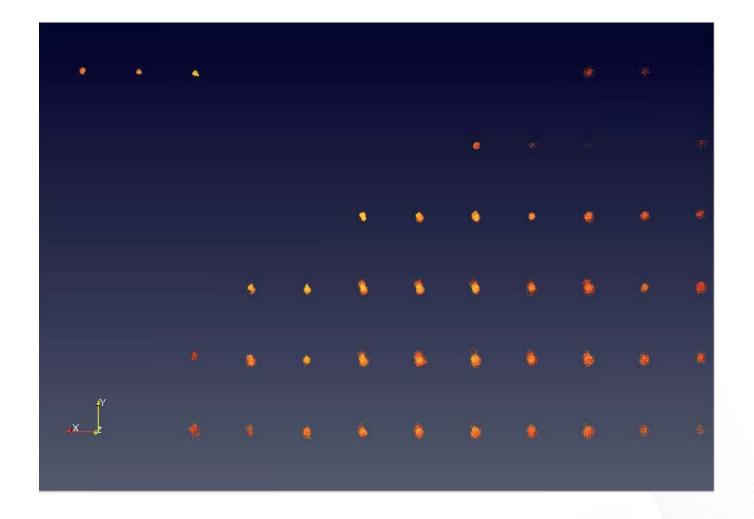
3D Reciprocal space mapping

Neutron wavelength-resolved Laue $d_{\min} = 0.25 \text{ Å}$ $Q_{\max} \approx 25 \text{ Å}^{-1}$



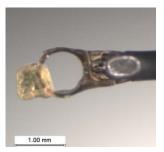


Neutron Wavelength-resolved TOF Laue



Single crystal peaks in Q space

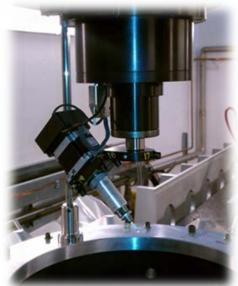
Single crystal peaks in Q space



Sample environment


Single Crystal Sample Mount

MiTeGen loop (1 mm ϕ)


Coated with perfluorinated grease Prytox **Kapton tube (1 - 3 mm φ)**

Glued onto the tip or inside a Kapton tube

Wired for E-field experiment

Crystal Logic Goniostat

Unit Cell < 500 Å³

0.005 mm³

Sub-Millimeter Sized Crystals

Diameter: 0.10 – 4.0 mm, Volume: > 0.1 mm³

Multiple Area Detectors

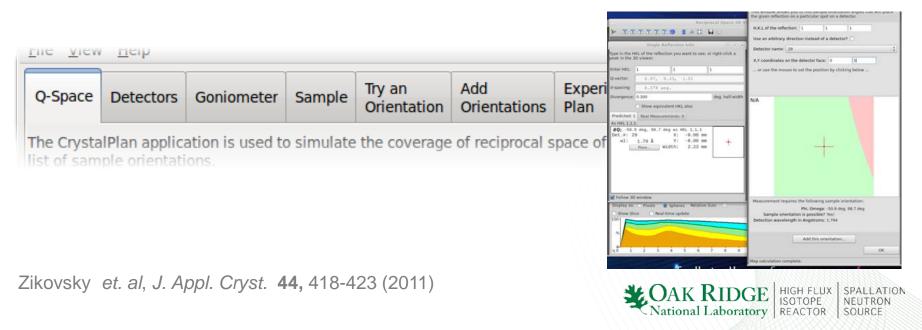
Solid Angle Coverage: 3 ster.

Detector 2 θ Coverage: 13.5° - 160°

Controlled Sample Environment

CryoStream 700 Plus: 90K – 450K

Pulsed Electric Field


Cryogenic goniometer 5K – 295K (2019)

Experiment planning

CrystalPlan

- An experiment planning tool for time-of-flight Laue experiment
- Develop data collection strategy to acquire the most unique data possible, with sufficient coverage but limited redundancy
- User friendly GUI Interfaces
 - Capable of placing an individual peak on selected detector position
 - Maximize the use of available beam time and productivity.

SCD event data reduction

Outer Background Size

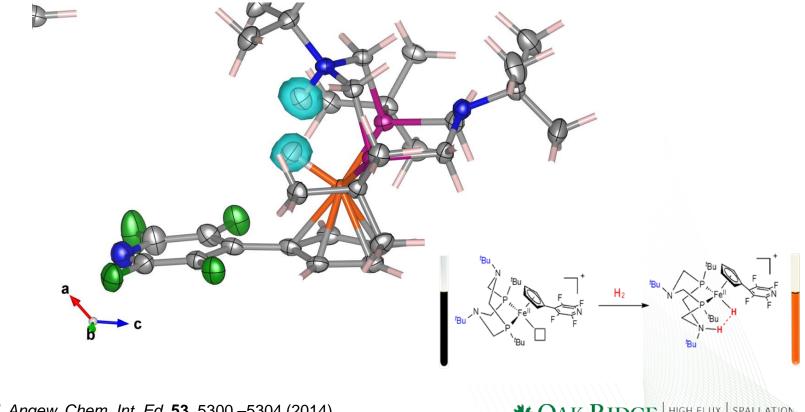
A schematic view of Bragg peak integration using three-dimensional ellipsoids in Mantid.

IntegrateEllipsoids

Applications Places System 📄			MantidPlot - un	titled
Edit View Windows Catalog	Interfaces Help		Manuariot - un	innen
Edit View Windows Catalog	Interfaces <u>H</u> elp Diffraction Direct DynamicPDF General Indirect Muon Reflectometry SANS Utility Add/Remove Categ	Powder Diffrac SCD Event Da	eduction Diffraction Reduction Stion Reduction	
Load Event Data				
Filename	/SNS/TOP	AZ/IPTS-18802/data/TOP	AZ_25321_event.nxs	Browse
☑ Load ISAW Detector Calibr	ation			
Filename	S/TOPAZ/II	PTS-18802/shared/calibr	ation/TOPAZ_2017C.Det	Cal Browse
Filename2				Browse
				Apply

Schultz et. al, J. Appl. Cryst. 47, 915-921 (2014)

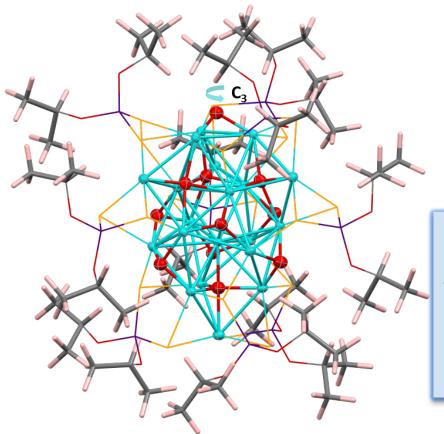
Angewandte Communications

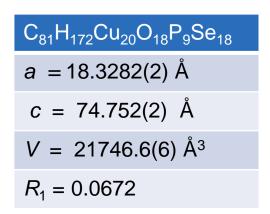

P Heterolytic H₂ Cleavage Very Important Paper

DOI: 10.1002/anie.201402090

National Laboratory REACTOR

Heterolytic Cleavage of Hydrogen by an Iron Hydrogenase Model: An Fe-H···H-N Dihydrogen Bond Characterized by Neutron Diffraction**


Tianbiao Liu, Xiaoping Wang, Christina Hoffmann, Daniel L. DuBois, and R. Morris Bullock**



Bullock et. Al, Angew. Chem. Int. Ed. 53, 5300 - 5304 (2014)

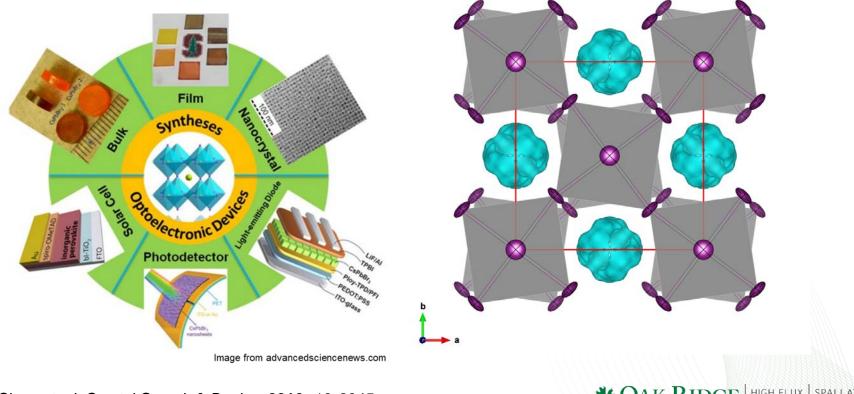
Crystal structure at sub-atomic resolution

Data from a hydrogenated single crystal sample

Hydrogenated sample
54 Atomic % Hydrogen
Well resolved hydrogen atom positions
10 Hydrides as capping μ₃-H ligands
1 Hydride as a μ₅-H ligand in trigonalbipyramidal cavity

Cu cyan, Hydride red

C.-W. Liu., et. al, Angew. Chem. Int. Ed. 2015, 54, 13604.


Hydrogen bonding in hybrid perovskites

- High power conversion efficiencies (> 22%) for solar cell applications
 - Heavy elements with very high X-ray absorption $\mu = 526.82$ cm⁻¹
 - Transparent to neutrons

```
\mu = 0.654 + 0.508\lambda \text{ cm}^{-1}
```

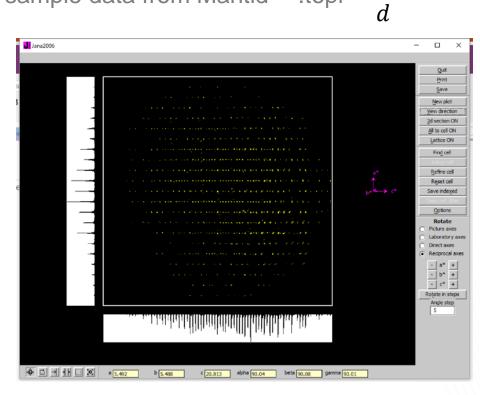
onal Laboratory | REACTOR

Effect of H-bonding on structural phase transitions, CH₃NH₃PbI₃

J. Chan et. al, Crystal Growth & Design 2016, 16, 2945

Recent development

• User friendly GUI based reduction and visualization software


Sample Information Reduction Input A	nvred Input								
Run Numbers 27041:27052]	Width of border to reject peaks 16							
Data Directory None	Browse	Tolerance 0.12							
Calibration File ation/TOPAZ_2018B.DetCal	Browse	Predict peaks 🔽							
Background File None	Browse	Minimum d-spacing predicted 0.499							
UB Filename None	Browse	Maximum d-spacing predicted 11.0							
Shortest lattice parameter 5.0		- Minimum wavelength predicted 0.4							
Longest lattice parameter 12.0		- Maximum wavelength predicted 3.45							
Dmin 0.37 Qmax 15.0		Peak radius 0.11 Specify size 🔽							
Split Threshold 100		Background inner radius 0.115							
Number Peaks To Find 500	2	Background outer radius 0.14							
Write Configuration File									
Run	Run Reduction with Configuration File								

Recent development

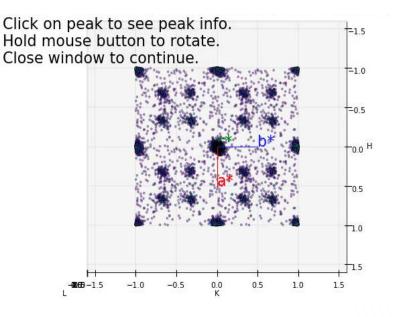
- TOF Laue data from modulated single crystal sample
 - Find and index q vectors
 - Integrate main Bragg and satellite peaks
 - Reduce data for structural analysis in JANA2006

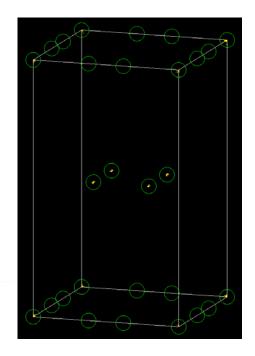
Q sample data from Mantid *.topi

 2π

SPALLATION NEUTRON

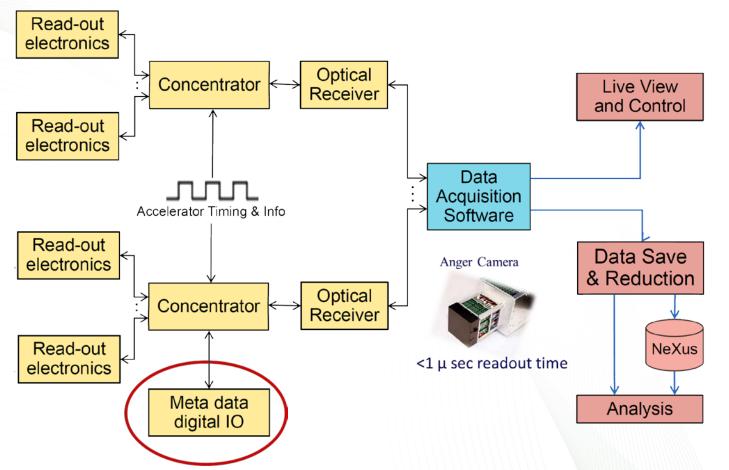
SOURCE


National Laboratory REACTOR


Recent Development

New Algorithms introduced to Mantid for data reduction from modulated structure

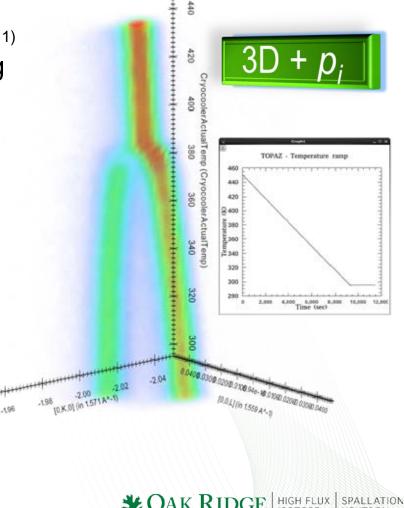
Vickie Lynch Shiyun Jin


ORNL GO! Student

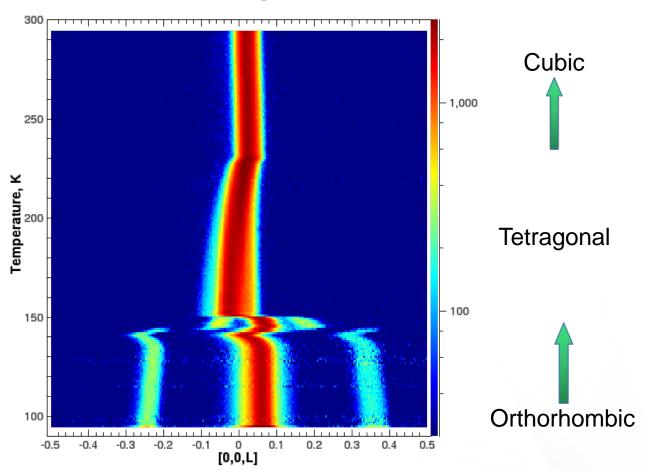
Data Acquisition System at SNS Instruments

SNS Real Time Data Link (RTDL), a 10 MHz, bi-phase mark encoded serial link. Signals have **100** *nanosec.* resolution.

doi:10.18429/JACoW-ICALEPCS2017-TUBPA05



Event-based data collection for parametric study

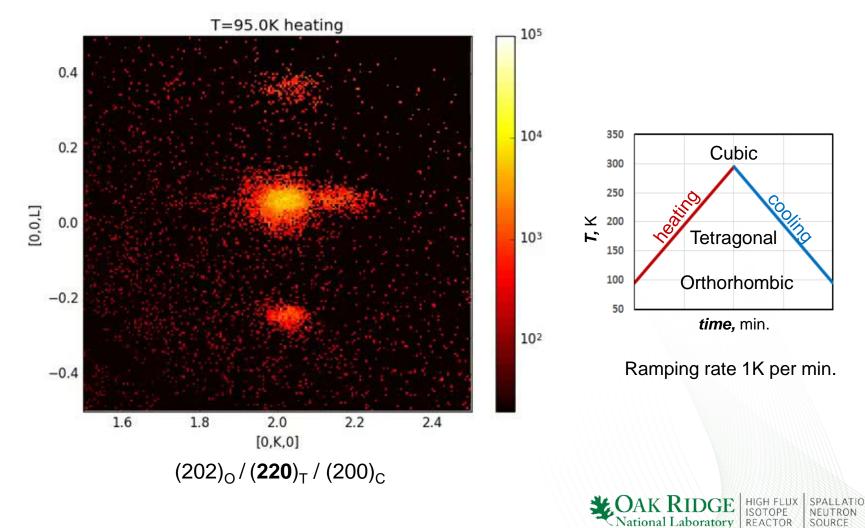

Variable temperature study

- Place preselected Bragg peak on selected detector position
 - CrystalPlan
 - Zikovsky *et al. J. Appl. Cryst*, **44**, 418 (2011)
- VT measurement while heating / cooling
 - Stationary single crystal
 - Neutron recorded in event mode
 Detector pixel position (x,y)
 Neutron time of flight (λ)
 - Sample temperature (T, K)
 Link to event data with a time stamp
- Data saved as event nexus file
- 3D diffraction data + external stimuli p_i with $i = 1 \dots n$

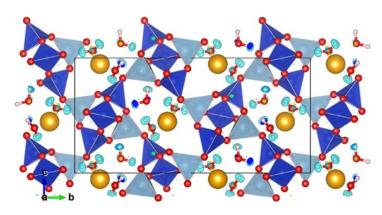
Static and Pulsed E-field: In user program

Study phase Transitions

MAPbBr₃ (Heating rate1 K min⁻¹)


Temperature dependence of the $(2\ 0\ 0)_{\rm C}$ peak

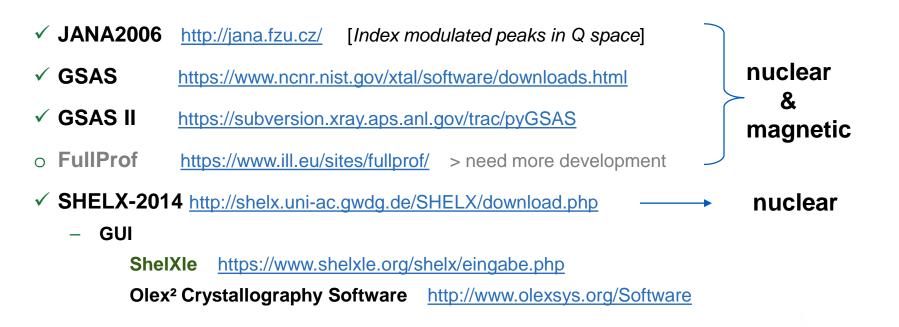
Yang et. al, Advanced Materials, **30**, 22, 1705801 (2018).


Visualization Real-Time Data

Evolution of the o-MAPbBr₃ (202)_o peak upon continuous heating from 95 K to 295 K and cooling from 295 K to 95 K at the rate of 1 K/min.

TOPAZ Data Format

- Scolecite
 - ORNL SNS TOPAZ Time of Flight Laue data
 - SHELX HKLF 2 Format [First 7 columns]



• h k Ι Fo² σ(Fo²) BN λ

E scolecite.hkl 🛛																					
1	-2	0	-4	481.25	22.08	1	2.50910	0.09279	-0.73919	-0.42826	0.58299	-0.58425	-0.56036	-0.79039	7450	1 0.8545	17	1.78159	1.6134	46.00	75.00
2	-2	0	-3	0.16	0.67	1	3.01813	0.09328	-0.73919	-0.55975	0.58299	-0.58433	-0.56036	-0.73663	7450	2 0.8375	17	1.84608	1.8924	150.00	142.00
3	-3	1	-5	65.50	6.91	1	1.96961	0.09433	-0.73919	-0.56637	0.58299	-0.48072	-0.56036	-0.81639	7450	4 0.8702	17	1.94420	1.1922	172.00	46.00
4	4																				
5	4	14	-3	19.82	2.98	2	1.59112	0.09256	0.93235	-0.06786	0.35276	0.82220	0.37397	-0.55718	7451	1949 0.8850	17	1.75654	1.0337	107.00	196.00
6	4	12	-3	124.36	8.03	2	1.78823	0.09338	0.93235	0.04000	0.35276	0.77920	0.37397	-0.57911	7451	1950 0.8774	17	1.83953	1.1240	114.00	99.00
7																					
8	-4	4	-12	61.52	7.25				-0.24143						7452	4143 0.9140	27	1.49461	0.6083		150.00
9	-4	6	-11	129.73	8.40				-0.24143			-0.49560			7452	4146 0.9090	27	1.62499			118.00
10	-4	4	-11	256.97	12.37	3	0.88075	0.08918	-0.24143	-0.67051	0.79045	-0.60491	-0.61164	-0.62278	7452	4147 0.9122	27	1.49560	0.6476	99.00	168.00
11	11																				
12		• • •																			
13	-10	0	7	3.86	6.49				-0.38555				0.11391		7488	68768 0.9252		0.94947	0.6443		
14	-10	0	8	-2.95	6.32				-0.38555			-0.88897	0.11391	0.08658	7488	68769 0.9254	28	0.95400			222.00
15	-3	9	3	220.71	10.99				-0.38555		0.88754	0.43063	0.11391	0.35170	7488	68883 0.8398	36	2.48719			181.00
16	-9	25	8	52.69	6.37				-0.38555		0.88754	0.38316	0.11391	0.26703	7488	68947 0.9007	36	2.44225	0.5126		160.00
17	-9	23	8	12.15	4.19				0.00000	-0.77370	0.88754	0.30488	0.11391	0.27425	7488	68948 0.9005	36	2.35891	0.5317		197.00
18	-9	25	9	302.20	15.47				-0.38555		0.88754	0.36055	0.11391	0.36169	7488	68954 0.9015	36	2.41150			216.00
19	0	0	0	0.00	0.00	0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0	0 0.0000	0	0.00000	0.0000	0.00	0.00

Structural analysis programs accept TOPAZ data

- Workshop Talks
- George Sheldrick: SHELXL for neutrons (TOPAZ, Oak Ridge 2015)
 http://shelx.uni-ac.gwdg.de/SHELX/shelxl_for_neutrons.pdf
- Xiaoping Wang: Refinement of small molecules against neutron data (ACA, 2016) http://shelx.uni-ac.gwdg.de/SHELX/neutrons_SM_ACA2016.pdf

