

Diffraction instrumentation at ESS

IKON 15 12th September 2018

Werner Schweika, Neutron Instruments Division, European Spallation Source ERIC

Impressions from the construction site User operation will start end of 2023

ESS "Butterfly" Moderator

Instrument Suite

powder diffraction

very high intensity compared to existing instruments very flexible resolution due to pulse shaping

DREAM thermal and cold (+ nm-SANS)

HEIMDAL thermal (+SANS) multiple length scales

MAGIC polarized

separating magnetic neutron scattering ... and incoherent H ... These instruments have

new ¹⁰B - detectors

- * high efficiency and
- * count rate capability
- 2D (3D) resolution
 single crystal diffraction
 texture

Using 2D and 3D detector information

High pressure – very small samples

a great help for identifying weak signals in large background

powder & texture

EUROPEAN SPALLATION SOURCE

Engineering Diffractometer

BEER thermal and cold

Imaging & SANS in future

J. Fenske (HZG, Germany) P. Beran (NPI, Czech Republic)

TOF Laue diffraction

=> 3d Q space

EUROPEAN SPALLATION SOURCE

Instruments for single crystal diffraction MAGIC dedicated for magnetism - **polarized** DREAM unpolarized / higher resolution / 3D PDF (HEIMDAL)

NMX for macromolecular crystallography Esko Oksanen

Hydrogen positions

Neutron Macromolecular Crystallography

EUROPEAN SPALLATION SOURCE

Neutrons see Hydrogen

relates to bonding and function

Enzyme mechanisms

Protein-ligand interactions Proton transport across membranes

urate oxidase transforms uric acid - how?

Esko Oksanen ESS

J. R. Soc. Interface 2009, PLoS ONE 2014

Time-of-flight Neutron Laue Diffraction

MAGIC

Polarized single crystal diffractometer for magnetism

Magnetic structures Spin densities & Local susceptibilities Frustrated magnetism - Diffuse scattering

Blume – Maleyev (1963) general theory for polarized neutron scattering

... yields two expressions

for scattering intensity

 $\sigma_{\mathbf{Q}} = |N_{\mathbf{Q}}|^{2} + \sigma_{\mathbf{Q},\text{isotope-inc}}^{\mathbf{N}} + \sigma_{\mathbf{Q},\text{spin-inc}}^{\mathbf{N}} + |\mathbf{M}_{\mathbf{Q}}^{\perp}|^{2} + \mathbf{P}(N_{-\mathbf{Q}}\mathbf{M}_{\mathbf{Q}}^{\perp} + \mathbf{M}_{-\mathbf{Q}}^{\perp}N_{\mathbf{Q}}) + i\mathbf{P}(\mathbf{M}_{-\mathbf{Q}}^{\perp} \times \mathbf{M}_{\mathbf{Q}}^{\perp})$ $magnetic \quad magnetic-nuclear interference \quad chirality$

and final polarized intensity

$$\mathbf{P}' \sigma_{\mathbf{Q}} = \mathbf{P} |N_{\mathbf{Q}}|^{2} + \mathbf{P} \sigma_{\mathbf{Q},\text{isotop-inc}}^{\mathbf{N}} - \frac{1}{3} \mathbf{P} \sigma_{\mathbf{Q},\text{spin-inc}}^{\mathbf{N}}$$

+
$$\mathbf{M}_{\mathbf{Q}}^{\perp} (\mathbf{P} \mathbf{M}_{-\mathbf{Q}}^{\perp}) + \mathbf{M}_{-\mathbf{Q}}^{\perp} (\mathbf{P} \mathbf{M}_{\mathbf{Q}}^{\perp}) - \mathbf{P} \mathbf{M}_{\mathbf{Q}}^{\perp} \mathbf{M}_{-\mathbf{Q}}^{\perp}$$

+
$$\mathbf{M}_{\mathbf{Q}}^{\perp} N_{-\mathbf{Q}} + \mathbf{M}_{-\mathbf{Q}}^{\perp} N_{\mathbf{Q}} + i(\mathbf{M}_{\mathbf{Q}}^{\perp} N_{-\mathbf{Q}} - \mathbf{M}_{-\mathbf{Q}}^{\perp} N_{\mathbf{Q}}) \times \mathbf{P} + i\mathbf{M}_{\mathbf{Q}}^{\perp} \times \mathbf{M}_{-\mathbf{Q}}^{\perp}$$

XYZ-polarization analysis for single crystals Separation of all terms for a multidetector system W. Schweika 2010 J. Phys.: Conf. Ser. **211** 012026

$|\mathbf{M}_{\mathbf{Q}}^{\perp}|^{2}$ **Polarized Time-of-flight Neutron Laue Diffraction**

MAGiC: 2x10⁹ n/s/cm²

10 min & 10 mm³ 16

EUROPEAN SPALLATION

SOURCE

Polarized $P(N_{-Q}M_Q^{\perp} + M_{-Q}^{\perp}N_Q)$ Time-of-flight Neutron Laue Diffraction

Spin densities in molecular magnets

Local susceptibilities anisotropies

UROPEAN

SPALLATION

277

State-of-the art single crystal measurements in magnetic field ... Do it with powders !

Polarized $i P(\mathbf{M}_{-\mathbf{Q}}^{\perp} \times \mathbf{M}_{\mathbf{Q}}^{\perp})$ Time-of-flight Neutron Laue Diffraction

EUROPEAN SPALLATION SOURCE

Future at ESS Small moments, small samples or heterostructures

EUROPEAN SPALLATION SOURCE

Many single crystalline materials are only available in very small quantities

Adapted from J. White et al., Phys. Rev. Lett. 111, 037201 (2013)

50 μn

S. Farokhipoor et al, Nature Materials 515, 379 (2015)

Courtesy Dr. M. Valldor

Det