

Low Background Neutron Monitor

ESS Bilbao, Zamudio, Spain

INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy

European Spallation Source, Lund, Sweden

Financed by brightnESS: WP4 detectors H2020-INFRADEV-2014-2015/H2020-INFRADEV-1-2015-1 11th September 2018

brightness

In-beam Neutron Monitors

- Gaseous detectors most used MWPCs - fission chambers - GEMs 2 vacuum windows are necessary (~ 1 mm aluminium each) Usually, detector thickness of the order of cm
- Others

Scintillators, solid state detectors Usually, selfstanding Variable designs and materials Current posposal: Solid struture not breaking the vacuum Converter: B₄C or lithium compound Substrate not necessarly of metal

Neutron Monitors at ESS for Normalization

- Radiation hard devices: life span of 10 years (> 10¹⁰ n_{th,cold}/cm²/s)
- 2 Able to sustain high count rates
- 3 Low perturbation of the neutron beam
- ④ price \sim 10 k€

Solid State Monitor for ESS

No vacuum windows Scattering reduction

Multiple efficiencies Avoiding gaps in the guides Thin materials in beam Low mass approach: Only a solid substrate ($\sim \mu m$) + the converter ($\sim nm$) Relatively thick converter ($\sim \mu m$) The ion detector can be embedded in the reflectors of the guides.

Implementation

Design by MCNP simulations - BrightnESS

Substrate: Al foil (as thin as possible) or Kapton (12.5 μ m - 40 μ m) (reduction of the γ -ray production of a factor 100)

Converter: lithium compounds - ¹⁰B₄C Detectors: **SiC** or rad hard Si

(low flux/efficiency solution) (best accuracy)

Micro Channel Plates

(high flux/efficiency solution)

A Low Background Neutron Monitor

5 / 15

MCNP Simulations

Geometry

- MIRACLES neutron guide $12 \times 12 \text{ cm}^2$
- Si detector 6 x 4 cm² x 300 μ m
- Substrate: 300 μ m Al or 40 μ m Kapton
- Converter: variable thicknesses of ^{nat,6}Li, ^{nat,6}LiF, ^{nat,10}B₄C
- Converter size: full area or fractions

Simulation approaches

- Thermal neutron source, MCNP simulating the capture and tracking all products (¹⁰B₄C, ⁶LiF)
- 2 Neutron tracking decoupled by the ion tracking
- ③ γ-ray background: monoenergetic 4.5 MeV source [Ni(n,γ)] 10 % of the neutron flux

Considerations:

- Detection energy spread due to electronics ignored
- Si dead layer not considered

MCNP Simulations of a $\varepsilon = 10^{-5}$ Monitor. 2 π source

Accuracy of the Monitor: semiconductor detectors

neutror Evaluation of the % of the ions above the threshold Detected Ions/ Depends on Ion struggling: detector position, thickness of the layer, size of the deposit Separation between ion species is an 10 advantange 10 Metallic lithium converter!! Deposited Energy/ MeV (left) 5 µm ⁶LiF 2.04 MeV c detector in contact 4 nm ⁶I iF 2 73 MeV T (right up) detector in 5 utron Det contact ₫10 ₽₁₀ (right) detector 4 cm 10 awav 10 10 10 Energy/ MeV Deposited Energy/ MeV

BrightnESS

8 / 15

Multiple Efficency Monitor: $\varepsilon = 10^{-3}$ and 10^{-5} or 10^{-6}

₅10 Simulated efficency at 2 $0_{e^{-0}}$ 10^{-5} ● 5 um ⁶L iF 10-6 50 nm ⁶l iF 10 nm ⁶LiF 8 12 14 16 Neutron wavelenght/ Å

Neutron wavelength dependence

Thickesses for a detector at 2 cm

Examples of suitable thicknesses:

- ⁶LiF 5 μ m $\varepsilon = 10^{-3}$ near, 10^{-6} at 30 cm
- ¹⁰B₄C 1 μm
 - $\varepsilon = 10^{-3}$ near, 10^{-5} at 30 cm

Ion Spectra for Two Efficiency Monitor

A Low Background Neutron Monitor

BrightnESS

Detection of the $\gamma\text{-}\mathrm{ray}$ background in silicon

Neutron capture in the guides generated 4.5 MeV $\gamma\text{-ray}$ with an occurance equal to 10 % of the neutron flux

BrightnESS

Conclusions

- The effect of the usage of plastic as substrate has been investigated
- Thicknesses generating different efficiencies determined for many converters
- Position of the detectors determined
- Effect of the γ -ray background on a silicon detector estimated
- Best converter if semiconductors are used: metallic lithium

Futher Developments

- 1 Define how to operate a MCP in low vacuum
- 2 Evaluate the γ -ray background detection in MCP
- **3** Design with SiC
- 4 Experimental tests
- 6 Prototyping

• Consorcio ESS Bilbao

M. Mosconi, R. Martinez,

- E. Abad, F. Villacorta,
- J. Ortega, M. Huerta,
- A. Zugazaga

• Laboratori Nazionali di Legnaro

P. Mastinu

• ESS ERIC

- R. Hall-Wilton,
- F. Issa

Thank you for your attention!

MCNP Simulations: Validation for ⁶Li and B₄C converters

- n_TOF efficiency reproduced at 1 eV (them: 6 10⁻⁴ %, us: 5 10⁻⁴ %)
- Emerging ions/neutron for common B₄C layers

Above: Ions detected in the SiMoN replica Left: Ions emerging

from 1 μ m $^{10}B_4C$ & 0.5 μ m $^{10}B_4C$