

Linköping University

Multi-Blade Detector for Neutron Reflectometry at ESS: results obtained at the CRISP reflectometer at ISIS and current status

Francesco Piscitelli on behalf of ESS / Wigner / Lund University / Linköping University collaboration

IKON15 Lund

2018/09/11

Building research infrastructure and synergies for highest scientific impact on ESS

Introduction

2 Reflectometers:

-7-2

¹⁰B-detector for reflectometers

O O Multi-Blade

¹⁰B-detector for reflectometers

BrightnESS

Linköping University

3 years

The key objective of WP4 is the technological evolution of neutron detectors in terms of resolution, intensity and dimensions.

Task 4.2 Neutron Detectors – The Intensity Frontier

High counting rate capability

High spatial resolution

6.55

Readout electronics

Readout electronics

Beam time on CRISP

Tests performed 1st week of October 2017 on the CRISP reflectometer at ISIS

Thermal Neutron Reflectometer	@ TS1
Neutron wavelength	0.5 – 6.5 Å @ 50Hz (0.5 – 13 Å @ 25Hz)
q range	0.005 – 1.1 Å ⁻¹
Moderator - sample distance	10.25m
Sample - Detector distance	1.87m
Sample - MB Detector distance	2.33m

The cassette (units) are placed horizontally

Beam time on CRISP

O O Multi–Blade

ements	efficiency	45% @ 2.5Å 56% @ 4.2Å 65% @ 5.1Å	
dur	spatial resolution	0.5 x 3.5 mm ²	x3 better than state-of-the-art
Б Г	uniformity	10%	
л Л	stability	2%	
atchin	counting rate capability	>1.6 kHz/mm2 (lower limit) >17kHz / channel (lower limit)	x10 better than state-of-the-art
Σ	gamma-ray sensitivity	< 10 ⁻⁷ (with 100keV threshold)	as good as state-of-the-art
	fast neutron sensitivity	< 10 ⁻⁵	x100 better than state-of-the-art
	gas gain	20	
	overlap	50% eff. drop in 0.5mm gap	

F. Piscitelli et al., The Multi-Blade Boron-10-based Neutron Detector for high intensity Neutron Reflectometry at ESS, JINST 12 P03013 (2017). E Piscitelli et al., Characterization of the Multi-Blade 10B-based detector at the CRISP reflectometer at ISIS, JINST 13 P05009 (2018)

F. Piscitelli et al., Characterization of the Multi-Blade 10B-based detector at the CRISP reflectometer at ISIS, JINST 13 P05009 (2018). G. Mauri et al., Neutron reflectometry with the Multi-Blade 10B-based detector, Proc. R. Soc. A 474: 20180266 (2018).

G. Mauri et al., Fast neutron sensitivity of neutron detectors based on boron-10 converter layers. JINST 13 P03004 (2018). F. Piscitelli et al. Study of a high spatial resolution ¹⁰B-based thermal neutron detector for neutron reflectometry: the Multi-Blade prototype, JINST 9 P03007 (2014).

Scientific results from CRISP

Scan in angle 0.2-0.8 deg

Ir sample Si sample Fe/Si sample

Scan in angle 0.2-0.8 deg

Scan in angle 0.2-0.8 deg

Scientific results from CRISP: Iridium

θ

Si sample

sample

Ir sample

15 Å

Nb

10¹ 0.2 deg 0.3 deg 0.4 deg 550 Å 10⁰ 0.5 deg 0.6 deg 0.7 deg 0.8 deg 10⁻¹ fit 7.3·10⁻⁶ Å⁻² <u>د 10-5</u> 10⁻³ 10⁻⁴ 0.02 0.04 0.05 0.07 0.08 0 0.01 0.03 0.06 $q (Å^{-1})$

Scientific results from CRISP

Working modes on CRISP

Scientific results from CRISP

Dependence of the q-resolution on detector spatial resolution

 $q = \frac{4\pi}{\lambda} \sin \theta$ Conventional data reduction

-

377

Scientific results from CRISP: Fe/Si

Scientific results from CRISP: Fe/Si

Nuclear Instruments and Mathods in Physics Research A 840 (2016) 181-185

Off-specular scattering from Fe/Si neutron supermirror

MB300 for ESTIA & FREIA

377

•

•

	N blades	Blade height (mm)	N wires	N strips	N tot ch	N pixels
ESTIA	50	280	1600	3200	4800	5 M
FREIA	30	280	960	1920	2880	1.8 M

Ti blade 280 •

32 wires x 64 strips

Top view

Side view

ESTIA

			Window	Stress
	Al 6000 series	Al 7000 series	Thickness	
Yield Strength	~240 MPa	~500 MPa	2 mm	290 MPa
Composition	Al (96%) Mp (1%)	Al (90%), Cu (1.5%)	3 mm	230 MPa
	Mg (1%)	Mg (2.5%)	3.5 mm	206 MPa
	Si (1%) others (1%)	Zn (5%) others (1%)	5 mm	125 MPa

TEST on AMOR (PSI)

13-18 Nov 2018

WHY: AMOR setup similar to the ESTIA setup (SELENE guides and focused beam)

WHAT: MB18 same size of the demonstrator tested on CRISP, but with all the improvements that will be implemented on the MB300 for the instruments

Test on AMOR (PSI)

Test on AMOR (PSI)

Conclusions

✓ MB concept

Design is ready to build for ESS instruments

Design completed

Blades ordered

MB fast neutron - gamma sensitivity

The sensitivity to background has been characterized Thermal n bg > fast n bg > gamma bg

✓ CRISP TEST

The Multi-Blade detector can be considered a mature technology for neutron reflectometry

Conclusions

✓ MB concept

Design is ready to build for ESS instruments

Design completed

Blades ordered

MB fast neutron - gamma sensitivity

The sensitivity to background has been characterized Thermal n bg > fast n bg > gamma bg

✓ CRISP TEST

The Multi-Blade detector can be considered a mature technology for neutron reflectometry

Future plans

> Upcoming tests

Beam time offered at PSI on AMOR (ESTIA concept)

Beam time offered at ISIS for rate tests Beam time offered at ILL (2019, rainbow concept on D50) Multi-Blade detector suggested for IFE new reflectometer

> Next MB detector

Build scaled up detector for ESTIA and FREIA

Publications

F. Piscitelli et al., Characterization of the Multi-Blade 10B-based detector at the CRISP reflectometer at ISIS, ArXiv:1803.09589, JINST 13 P05009 (2018).

G. Mauri et al., Neutron reflectometry with the Multi-Blade 10B-based detector, ArXiv:1804.03962, Proc. R. Soc A 474: 20180266 (2018).

G. Mauri et al., Fast neutron sensitivity of neutron detectors based on boron-10 converter layers, ArXiv:1712.05614, JINST 13 P03004 (2018).

F. Piscitelli et al., The Multi-Blade Boron-10-based Neutron Detector for high intensity Neutron Reflectometry at ESS, ArXiv:1701.07623, JINST 12 P03013 (2017).

A. Carmona Besañez et al., Python tool for eff calculations of B10 detectors, ArXiv:1801.07124, submitted to Computer Physics Communications (2018).

F. Piscitelli et al., Neutron reflectometry on highly absorbing films and its application to ¹⁰B₄C-based neutron detectors ArXiv:1510.01085v1, Proc. R. Soc. A 472, Issue 2185 (2016).

F. Piscitelli et al. Study of a high spatial resolution ¹⁰B-based thermal neutron detector for neutron reflectometry: the Multi-Blade prototype, ArXiv1312.2473, JINST 9 P03007 (2014).

F. Piscitelli and P. Van Esch, Analytical modeling of thin film neutron converters and its application to thermal neutron gas detectors, ArXiv:1302.3153, JINST 8 P04020 (2013).

