NCrystal : a library for thermal neutron transport in crystals

Thomas KITTELMANN, Xiao Xiao CAI

Sep 11, 2018 IKON15, Lund

The MCPL project

https://mctools.github.io/mcpl/

T. Kittelmann, E. Klinkby, E.B. Knudsen, P. Willendrup, X.X. Cai, K. Kanaki

The NCrystal project

https://mctools.github.io/ncrystal/

Original motivation: Augment Geant4 with proper modelling of thermalised neutrons in crystalline materials (and avoid the usual free-gas treatment)

Advances earlier efforts in older "NXSG4" plugin

- T Kittelmann and M Boin 2015 Comput. Phys. Commun. 189, 114-118
- Geant4-specific plugin for polycrystals, no proper bkgd, no tools/bindings
- Thin wrapper around nxslib by M. Boin.

The NCrystal project

https://mctools.github.io/ncrystal/

Original motivation: Augment Geant4 with proper modelling of thermalised neutrons in crystalline materials (and avoid the usual free-gas treatment)

Advances earlier efforts in older "NXSG4" plugin

- T Kittelmann and M Boin 2015 Comput. Phys. Commun. 189, 114-118
- Geant4-specific plugin for polycrystals, no proper bkgd, no tools/bindings
- Thin wrapper around nxslib by M. Boin.

Scope has expanded beyond Geant4

- We can reach a wider and more relevant community
- We also have use-cases outside Geant4 ourselves
- As a service to the community in general

The NCrystal project

https://mctools.github.io/ncrystal/

Original motivation: Augment Geant4 with proper modelling of thermalised neutrons in crystalline materials (and avoid the usual free-gas treatment)

Advances earlier efforts in older "NXSG4" plugin

- T Kittelmann and M Boin 2015 Comput. Phys. Commun. 189, 114-118
- Geant4-specific plugin for polycrystals, no proper bkgd, no tools/bindings
- Thin wrapper around nxslib by M. Boin.

Scope has expanded beyond Geant4

- We can reach a wider and more relevant community
- We also have use-cases outside Geant4 ourselves
- As a service to the community in general

Many available interfaces

Can share configurations and data files across them all

NCrystal data library

https://mctools.github.io/ncrystal/ → wiki → Data-library

F m -3 m (225)

Ge_sg227	^{Fd-3} NCry for c	ystal co lescribi	mes wit ng a lar	h library of validated data files, ge number of crystal
Mg_sg194	P 63/m structures relevant to neutron scattering. P=1.7 All 0. 0.5 0.5 All 0. 0.5 0.5			
Mo_sg229	I m -3 m (229) ρ=10.22 g/cm ³ 			Al 0.5 0.5 0. Al 0.5 0.5 0. @DEBYETEMPERATURE Al 410.35
Na_sg229	l m -3 m (229) ρ=0.96663 g/cm³ 			Al_sg225.ncmat
Nb_sg229	I m -3 m (229) ρ=8.5827 g/cm³ 			
Ni_sg225	F m -3 m (225) ρ=8.9092 g/cm ³ 	- Martin		
Pb_sg225	F m -3 m (225) ρ=11.344 g/cm³ 		Crystal orientation in EXFOR 13761010 unknown	
Pd_sg225	F m -3 m (225) p=12.01 g/cm ³ 			

NCrystal data library NCrystal https://mctools.github.io/ncrystal/ → wiki → Data-library X. X. Cai & T. Kittelmann NCMAT v1 Fd-Ge_sg227 p=5.3 #Some comment here... NCrystal comes with library of validated data files,-**@CELL** lengths 4.04958 4.04958 4.04958 for describing a large number of crystal angles 90. 90. 90. **@SPACEGROUP** structures relevant to neutron scattering. 225 P 63/m **@ATOMPOSITIONS** Mg_sg194 ρ=1. A1 0. 0.5 0.5 14 11 Contract of the local division Al 0. 0. 0. Al 0.5 0.5 0. Im -3 m (229) A1 0.5 0. 0.5 Mo_sg229 o=10.22 g/cm 10² **@DEBYETEMPERATURE** Ni sg225.ncmat Al 410.35 R.G.Allen 1954 EXFOR 11762002 Al sg225.ncmat I m -3 m (229) H.Palevsky 1954 EXFOR 11355002 Na sg229 p=0.96663 g/cm³ Browse derived quantities, section, barn plots, validations, ... Number of Street, Stre I m -3 m (229) Nb_sg229 p=8.5827 g/cm OSS F m -3 m (225) Ni_sg225 p=8.9092 g/cm 10¹ ∟ 10⁻⁴ 10-3 10-2 10-1 10⁰ 10¹ energy, eV F m -3 m (225 p=11.344 g/cm Pb_sg225 Crystal orientation in EXFOR 13761010 is unknown F m -3 m (225) Pd_sg225 p=12.01 g/cm3 F m -3 m (225)

16

NCrystal data library NCrystal https://mctools.github.io/ncrystal/ → wiki → Data-library X. X. Cai & T. Kittelmann NCMAT v1 Fd-Ge_sg227 p=5.3 #Some comment here... NCrystal comes with library of validated data files, **@CELL** lengths 4.04958 4.04958 4.04958 for describing a large number of crystal angles 90. 90. 90. **@SPACEGROUP** structures relevant to neutron scattering. 225 P 63/m **@ATOMPOSITIONS** Mg_sg194 0=1 A1 0. 0.5 0.5 Scatters 0. 0. Al 0. Al 0.5 0.5 0. Im -3 m (229) A1 0.5 0. 0.5 Mo sg229 o=10.22 g/cm 10² **@DEBYETEMPERATURE** Ni sq225.ncmat Al 410.35 R.G.Allen 1954 EXFOR 11762002 Al sg225.ncmat I m -3 m (229) H.Palevsky 1954 EXFOR 11355002 Na sg229 p=0.96663 g/cm Browse derived quantities, section, barn plots, validations, ... Im -3 m (229) Nb_sg229 p=8.5827 g/cm OSS F m -3 m (225) p=8.9092 g/cm Ni_sg225 10¹ L 10-3 10-2 10-1 10⁰ 10¹ energy, eV F m -3 m (225) p=11.344 g/cm² Pb_sg225 To use in Geant4 or McStas (or ...), simply supply Crystal orientation in EXFOR 1376101018 name of material file, along with relevant parameters unknown F m -3 m (225) like temperature, orientation of single crystal, etc. Pd_sg225 p=12.01 g/cm²

F m -3 m (225)

Bragg diffraction in polycrystals and powders

Based on provided HKL planes with d-spacings and structure factors, the implementation is straight-forward. Care is taken to be extremely fast O(ns/call), even in case of huge number of planes. Al sg225.ncmat 25 Bragg Al Bkgd Geant4 free-gas model **Geant4 with NCrystal** Absorption (wrong MFP, wrong scatter) 2.0 ⇒Debye-Scherrer cones Total Al sg225.ncmat [Bragg+Bkgd] 180 Cross-section [barn] 0.1 Al 160 140 Scattering angle [degrees] 0 08 00 071 0.5 0.0 Neutron wavelength [angstrom] 40 Provides cross-sections 20 01 2 3 Δ 5 Non-Bragg "Bkgd" component Neutron wavelength [angstrom] discussed on later slide And scatter angles

Single Crystals with Gaussian mosaicity

Can model monochromators, analysers, SC samples

Single Crystals with Gaussian mosaicity

Can model monochromators, analysers, SC samples

*: Once contributing normals Have been identified.

*: Once contributing normals Have been identified.

Simple closed-form approx. valid for small mosaicity (and not backscattering):

$$\sigma_{\text{Bragg}}(\alpha, \gamma) = Q \times \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}\delta_0^2/\sigma^2\right]$$
$$\delta_0 = |\alpha - \gamma|$$

Single Crystals with Gaussian mosaicity

Can model monochromators, analysers, SC samples

*: Once contributing normals Have been identified.

Simple closed-form approx. valid for small mosaicity (and not backscattering):

$$\sigma_{\text{Bragg}}(\alpha,\gamma) = Q \times \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}\delta_0^2/\sigma^2\right] \times \text{erf}$$

 $\delta_0 = |\alpha - \gamma|$

Improved form extends validity to much larger mosaicities

 \times

 $\left|\frac{\sin\alpha}{\sin\gamma}\right| \times$

 $1/(2\pi\sigma^2)$

- δ_0^2

 $2\sigma^2$

$$\sigma_{\text{Bragg}}(\alpha, \gamma) = Q \times \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}\delta_0^2/\sigma^2\right] \times \text{erf}$$

 $\delta_0 = |\alpha - \gamma|$

Improved form extends validity to much larger mosaicities

 \times

 $\sin \alpha$

 $\sin \gamma$

 $1/(2\pi\sigma^2)$

 δ_0^2

Pyrolythic Graphite Special anisotropic model

Layered crystal model:

- Usual Gaussian mosaic distribution is "smeared out" by rotation
- Exhibits both single-crystal and powder features. z

Features:

- Cross-sections determined by efficient pre-search followed by fast Romberg integration of usual Gaussian mosaicity code.
- Features realistic transmission probabilities and multiple-scattering effects (incl. "zig-zag walk")

Inelastic cross-section estimated by multi-phonon expansion, calculated via custom FFT code during the Initialisation stage:

Inelastic cross-section estimated by multi-phonon expansion, calculated via custom FFT code during the Initialisation stage:

Inelastic cross-section estimated by multi-phonon expansion, calculated via custom FFT code during the Initialisation stage:

Diamond

Pb

This approach much more reliable than any of the various empirical formulas people typically employ (e.g. Cassels 1950, Freund 1983, Einstein model, ...)

Be

Inelastic cross-section estimated by multi-phonon expansion, calculated via custom FFT code during the Initialisation stage:

This approach much more reliable than any of the various empirical formulas people typically employ (e.g. Cassels 1950, Freund 1983, Einstein model, ...)

Advantage: Works without extra input (such as scatter kernels)! Limitation: No specific modelling of energy transfers & scatter-angles. Work in progress: Trying to mitigate limitation somewhat.

...but will in any case not always be precise enough...

NCrystal physics Planned support for detailed inelastic/incoherent data

NCrystal physics Planned support for detailed inelastic/incoherent data

NCrystal physics Planned support for detailed inelastic/incoherent data

Aim is ability to model individual scatterings precisely, not just many-scattering effects. Improving algorithms where needed:

Rejection-based sampling of inelastic neutron scattering

X.-X. Cai^{a,b,*}, T. Kittelmann^b, E. Klinkby^{a,b}, J.I. Márquez Damián^c

^aTechnical University of Denmark, Denmark ^bEuropean Spallation Source ERIC, Sweden ^c Nuclear Data Group, Neutron Physics Department, Centro Atómico Bariloche, CNEA, Argentina

> Submitted to J. Comput. Phys. (arXiv:1808:02634)

Abstract

Distributions of inelastically scattered neutrons can be quantum dynamically described by a scattering kernel. We present an accurate and computationally efficient rejection method for sampling a given scattering kernel of any isotropic material. The proposed method produces continuous neutron energy and angular distributions, typically using just a single interpolation per sampling. We benchmark the results of this method

Validate PC/Powder Bragg & Inel./incoh. models with EXFOR total x-sects

Validate Single Crystal code against analytical predictions or other codes

Technical check for consistency of Single Crystals codes

In principle an isotropically illuminated single crystal should on average give powder-like cross-sections.

In practice, a lot of edge-cases and details have to be treated correctly in the SC code before this happens!

Another check is that consistent SC codes should provide "zig-zag walk"

Thanks to the DMSC cluster for help with this brute force validation.

Large validation effort

Against measurements, formulas, other codes, ...

Reproduce powder data, simulating IFE PUS Instrument with collimator, monochromator and powder sample (sapphire).

Outlook and planned work

- Most urgently: Finish and submit detailed publication (this fall)
- Continue work for upstream integration into Geant4, McStas, etc.
 - Work with (or help) relevant experts
 - Must improve multi-threading support (needed for proper ANTS2+Geant4 integration)
- Improve modelling of inelastic/incoherent components
 - Including adding support for scatter kernels
 - But also improve modelling of materials without such extra data.
- Support "impure" materials: multiphase alloys, dopings, contaminations, enrichments.
- Continue to expand data library size and capabilities
- Consider various (reasonable) requests:
 - Support focusing in McStas, d-spacing deviations, asymmetric mosaicities, in-memory data files, ...
- Expand data library and documentation

Incomplete (sorry!) list of people who provided useful input, testing, bug reports or other support: J. I. Márquez Damián, E. Dian, R. Hall-Wilton, K. Kanaki, M. Klausz, E. Klinkby, E.B.Knudsen, A. Morozov, P. Willendrup, ...

https://mctools.github.io/ncrystal/