

The Common Shielding Project

IKON15 Lund, 12th of September 2018

Ken Andersen, Neutron Instruments Division, European Spallation Source ERIC

Shielding costs from scope-setting

Instrument	cave cost	guide shield cost	total shield cost
FREIA	720 k€	1,101 k€	1,821 k€
BEER	658 k€	1,885 k€	2,543 k€
BIFROST	686 k€	1,667 k€	2,353 k€
CSPEC	867 k€	1,344 k€	2,211 k€
DREAM	1000 k€	996 k€	1,996 k€
ODIN	1500 k€	1,887 k€	3,387 k€
SKADI	1000 k€	1,999 k€	2,999 k€
LOKI	1000 k€	730 k€	1,730 k€
MAGIC	457 k€	952 k€	1,409 k€
MIRACLES	1080 k€	1,109 k€	2,189 k€
T-REX	538 k€	1,686 k€	2,224 k€
VESPA	822 k€	2,221 k€	3,043 k€
HEIMDAL	630 k€	2,070 k€	2,700 k€
Total	10,958 k€	19,647 k€	30,605 k€
Average	843 k€	1,511 k€	2,354 k€

Scope of proposal

- Proposal: guide shielding for long and medium instruments
 - from bunker to cave
 - include shielding around choppers
 - Include all long instruments (West sector)
 - No short instruments: LOKI, FREIA, ESTIA
 - strongly integrated with neighbouring beamlines
 - Include medium instruments: ODIN, DREAM, VESPA, SKADI
- Use engineering resources from bunker team
- Use whatever neutronics resources we can get our hands on
 - Mainly from instruments which have signed up
- 8 instruments signed up:
 - Long instruments: CSPEC, BIFROST, MAGIC, T-REX, HEIMDAL
 - Medium instruments: ODIN, DREAM, VESPA

Project Timeline

Proposed rebaseline schedule for NBI* Installation (TG4 -> TG5) (V4.-0.4, 12th April 2018)

(based on CF building access dates of 12th April

EUROPEAN

SPALLATION SOURCE

Project Scope

- PDR deliverables (December 2018)
 - mechanical design completed
 - analysis of different beamline scenarios (straight, curved, high-m)
 - analysis of compatibility with logistics
 - 3D model
 - integration drawing(s)
 - neutronics calculations completed
 - validating and driving mechanical design
 - reports issued
 - hazard analysis done and documented
 - cost estimate for each instrument
 - manufacturing and purchasing strategy agreed
- CDR deliverables (May 2019)
 - mechanical design completed and approved
 - all neutronics work completed
 - design, validation, background
 - all reports completed and approved
 - all systems documentation completed and approved
 - procurement and manufacturing plan prepared and ready for initiation

Project Organisation

Project Organisation

Senad

Ext. Neutronics

EUROPEAN SPALLATION

2018	April	May	June	July	August	Sep.	Oct.	Nov.	Dec.
Proposal Development									
ICB10 Meeting	•								
Sign-up									
Preparation			1						
Project kick-off			♦						
Engineering design									
Neutronics workshop					•				
Neutronics start									
Neutronics work									
Design work complete								•	
Costing & documentation									
Project completion									•

What happened at neutronics workshop

- Presentation of engineering design
- Presentation of neutronics work already done
 - Source terms (Valentina Santoro)
 - PSI: MAGIC, ESTIA, PSI state-of-the-art (Uwe Filges)
 - TUM: ODIN shielding (Florian Grünauer)
 - FZJ: DREAM shielding (Tsito Randriamalala)
 - IFE: BIFROST, prompt-gamma shielding, fast-neutron streaming (Rodion Kolevatov)
- Agreed on work plan
 - Florian, Tsito, Rodion available until December
 - Once engineering concept is ready
- Agreed on working method
 - Weekly (Thursday) meetings
 - Log results, discussions, decisions on Confluence page

Priorities for Guide Shielding

- 1. Shielding performance
 - Reaching 3 μSv/hr
- 2. Activation
 - Choose standard components, so they count as spare parts, not waste
 - Apply ALARA for decommissioning
 - Maintenance access within 24 hours
- 3. Instrument background
 - Primarily addressed by cave design
 - Long distance (60-170m) also helps
- Expected outcome: cost-effective solution which instruments will choose to sign up to
- Modular design
 - Provide small menu of options: within LOS, outside LOS, chopper pit
 - Vary materials thicknesses as required

- Guide interface
 - Use 4m sections, prealigned on 4m girders
 - Alignment access only at ends from sides OK
 - Alignment under supporting 4m girder, using adjustable kinematic mount

- Guide interface
 - Use 4m sections, prealigned on 4m girders
 - Alignment access only at ends from sides OK
 - Alignment under supporting 4m girder, using adjustable kinematic mount

- Guide interface
 - Use 4m sections, prealigned on 4m girders
 - Alignment access only at ends from sides OK
 - Alignment under supporting 4m girder, using adjustable kinematic mount

5

- Guide interface
 - Use 4m sections, prealigned on 4m girders
 - Alignment access only at ends from sides OK
 - Alignment under supporting 4m girder, using adjustable kinematic mount
- All instruments need to provide ray-tracing input files
 - Done!
 - Needed for prompt-gamma calculation
- All instruments need to use neutron-absorbing guide substrates or add absorber around guides
 - Same requirement as in bunker

Today's Agenda

- 9:00-10:30 Introduction & Overview
 - 9:00 Ken Andersen: Organisation and status of the project
 - 9:30 Senad Kudumovic: Engineering designs
 - 10:00 Michal Kazda: BEER shielding
- 13:30-15:00 Neutronics
 - 13:30 Phil Bentley: Organisation of neutronics work
 - 13:45 Uwe Filges: Overview of inside and outside LOS neutronics
 - 14:00 Tsito Randriamalala: Guides within LOS
 - 14:15 Rodion Kolevatov: Guides outside LOS
 - 14:30 Valentina Santoro: Neutron source terms

Thank you!

