

BEFORE GSAS TO GSAS-II & BEYOND

ROBERT VON DREELE APS/ANL

ESS, Lund, Sweden June, 2018

PLUTO REACTOR AERE HARWELL – 1970'S

PANDA Diffractometer

Fig. 2. A schematic diagram of a neutron powder diffractometer named PANDA which is installed at A.E.R.E. Harwell.

AKC & RBVD experiment: $2\Theta_m$ 92°, λ =1.57-1.61Å, 2-2.5x10⁵ n/scm², scan @50m/deg

This is where it starts - Alan's Manual

Original with my annotations of additions to input file for my 1973 version

WHAT DID IT RUN ON? CHILTON ICL1906A – AERE HARWELL, UK

256k 24bit words (~ 800kB) **OS: GeorgeIII & George4** Produced ~1MW of heat About as much compute power as a old cell phone **Banbury Rd. Oxford** ICL1906a similar

WHAT DID WE DO WITH IT? – 3 DAY SCANS! LHe TEMPS.

FIGURE 3. Neutron powder diffraction profile for TiNb₂O₂. Lines and points represent calculated and observed profiles, respectively. A difference curve is shown.

TiNb₂O₇;A2/m,a=11.89,b=3.80,c=20.37, β =120.2° 603 refl.,1077 data points

FIGURE 4. Neutron powder diffraction profile for ortho-Ti₂Nb₁₅O₂₅. Lines and points represent calculated and observed profiles, respectively. A difference curve is also shown.

o-Ti₂Nb₁₀O₂₉, Amma, a=28.30,b=3.78,c=20.35 843 ref., 1116 data points

R. B. Von Dreele and A. K. Cheetham *Proc. R. Soc. Lond. A* 1974 **338**, 311-326

HUGO'S PROGRAM FAMILY TREE

GENERAL STRUCTURE ANALYSIS SYSTEM GSAS

- 1982-1986 Initial development for multidata TOF neutron powder & single crystal data – A.C. Larson & R.B. Von Dreele
- VAX Fortran; ISAM file structure; batch process calculations
- Multidata/multiphase complex input file (experiment file)
- Menu-driven editor EXPEDT All about taming the control file
 - state of the art in 1980's
- Later EXPGUI (B.H. Toby) more modern interface (1990's)
- Fundamental crystallographic calculations refinement, Fourier maps, structure drawings & geometry (dist, angle, etc.) – no solution tools

EXPEDT	<pre>data setup option (<?>,D,F,K,L,P,R,S,X) ></pre>
EXPEDT	data setup options:
- '	Type this help listing
D – 1	Distance/angle calculation set up
F - 3	Fourier calculation set up
Kn-1	Delete all but the last n history records
L - 3	Least squares refinement set up
P - 1	Powder data preparation
r – 1	Review data in the experiment file
S - (Single crystal data preparation
x – :	Exit from EXPEDT

EXPGUI /ho	me/toby/t	test/TB002AS	/M1.EXP								
File Option	ns Pov	vder Xtal	Graphs R	esults C	alc Impo	rt/Exp	ort				Hel
expnam e	expedt	genles p	owpref p	owplot Is	tview 🛛 liv	eplot	1				
LS Contr	ols P	hase His	togram S	Scaling	Profile	Cons	traints	MD Pref	Orient	SH Pr	ef Orie
- 						~ 7					
Phase: 1	Repla	ce		tit	le: 1621i2	07		_			
Add		a 1	0.149400	b 10.14	9400 c	10.	149400	Edit	Refir	ne Cell	
Phase		α. 90	0.0000	β 90.00	00 3	90.	0000	Cell	Cell da	mping	0 -
* name	type	ref/damp	fractio	mal coord	inates	Mult	Occupanc	y Uiso			
1 TB(1)	TB	X0 U0 0	0.000000	0.000000	0.00000) 16	1.0000	0.009	79 06		2
3 0(3)	0	X0 00 0	0.500000	0.125000	0.125000) 16	1.0000	0.006	96 88		
4 0(4)	0	X0 U0 0	0.125000	0.125000	0.125000) 8	1.0000	0.009	45		
Set refin	ement o	options: ato	ms 3,4						Add	New At	oms
Refinement Flags: 🗖 X 📮 U 💷 F Damping: X 0 - U 0 - F 0 - Xform Atoms											
		-		[1			1
_						-					

GSAS:

Extensions 1986-2004

- VAX \rightarrow IRIX (ISAM emulator) \rightarrow PC (\rightarrow OSX)
- CW neutron & X-ray (X-ray energy dispersive)
- New profile functions as developed (mustrain, size, strain, etc.)
- Texture spherical harmonics
- Proteins (powders!)
- Easily scripted
- Documented LAUR 86-748 "GSAS Manual"
- Widely accepted by community by 2018 ~8000 citations to LAUR 86-748
- But: reached design limits on expansion (9 phases/99 histograms)
- Dated interface (both EXPEDT & EXPGUI) & steep learning curve
- Lacked powder indexing & structure solution tools
- Modern 2D detector data needed proper preprocessing
- Need new tool for modern crystallography → GSAS-II

FOR DIFFRACTION ANALYSIS, GSAS & EXPGUIARE WIDELY USEDWide Range of Fields

EXPGUI citations/year; Web of Science

- Need a new code, GSAS & EXPGUI
 - Hard to maintain
 - Impossible to expand
 - Didn't cover full scope

% of total
31.6
30.4
15.7
14.2
12.1
8.6
7.7
6.6
6.4
4.9
4.9
4.7
4.5
4.0
2.3
2.0
2.0

Highly utilized in DOE/SUF

			-
Argonne	DE-AC02-06CH11357	11.1%	
Brookhaven	DE-AC02-98CH10886	3.5%	
Lawrence Berkeley	DE-AC02-05CH11231	1.6%	
HPCAT/DOE-NNSA	DE-NA0001974	1.5%	20%
GSECARS/DOE-Geo	DE-AC52-06NA25396	1.4%	
HPCAT/DOE-BES	DE-FG02-99ER45775	1.4%	
National Basic Research			1
Program of China	2011CB808200	1.3%n	

GSAS-II: A MODERN ANALYSIS PACKAGE FOR ALL ASPECTS OF CRYSTALLOGRAPHY

GSAS-II is intended to more than replace GSAS & EXPGUI with a new, modern, extensible, and <u>open-source</u> crystallographic analysis

- Support all aspects of diffraction data analysis (from raw data to publication), including capabilities not in GSAS/EXPGUI
- Facile processing of large numbers of similar datasets
- Written with modern code (Python)
- Incorporates extensive visualization
- Use parameters that "make sense"
- Designed around GUI
- Design goal: Novice friendly, but expert efficient

GSAS-II reads powder diffraction images from all appropriate synchrotron beamlines, as well as the Curiosity Rover on Mars!

B.H. Toby and R.B. Von Dreele, "GSAS-II: The Genesis of a Modern Open-Source All-Purpose Crystallography Software Package". *Journal of Applied Crystallography*. **46**: p. 544-9 (**2013**).

WHY PYTHON? – CHOICE OF LANGUAGES (~LOG SCALES!)

12

WHY PYTHON?

Code snippet – charge flipping all inside a "while" loop

NB: CEhkl is F_{hkl} expanded over full sphere & zero filled out to 1/resolution limit as an array Start with random phases for CEhkl

CErho = np.real(fft.fftn(fft.fftshift(CEhkl)))*(1.+0j)#fft Fhkl $\rightarrow \rho(xyz)$ CEsig = np.std(CErho)#get $\sigma(\rho)$ CFrho = np.where(np.real(CErho) >= flipData['k-factor']*CEsig,CErho,-CErho) #CF $\rho \rightarrow \rho$ ' CFrho = np.where(np.real(CErho) <= flipData['k-Max']*CEsig,CFrho,-CFrho) #U atom CF! #fft $\rho(xyz) \rightarrow F'(hkl)$ CFhkl = fft.ifftshift(fft.ifftn(CFrho)) CFhkl = np.where(CFhkl, CFhkl, 1.0)#avoid divide by zero phase = CFhkl/np.absolute(CFhkl) # get ϕ (hkl) from F' CEhkl = np.absolute(CEhkl)*phase #apply ϕ to F Ncyc += 1#count tries sumCF = np.sum(ma.array(np.absolute(CFhkl),mask=Emask)) $\#\Sigma F$ DEhkl = np.absolute(np.absolute(Ehkl)/sumE-np.absolute(CFhkl)/sumCF) $\#\Sigma DF$ Rcf = min(100.,np.sum(ma.array(DEhkl,mask=Emask)*100.)) #R-value for CF NB: the 4D version is almost identical except that F_{hklm} is used

This stuff is fast! ~1s/cycle for 500K reflections/map points

ANOTHER EXAMPLE – OMIT MAP CALCULATIONS

OMIT map – a kind of Fourier map (T.N. Bhat, J. Appl. Cryst. 21, 29-281, 1988)

Usefulness:

Least biased electron density map for rebuilding structure (mostly for macromolecular structures)

Algorithm:

Compute density from structure factors & phases

Unit cell divided into boxes

In turn – flatten each box, do IFFT to make phases, compute new density & save box (toss the rest).

Finally assemble all boxes into new "OMIT" map.

Coding:

Old CCP4 code – covers 114 pages of printout, ~ 80 lines/page (~9000 lines of Fortran & some c)! Not readily available for nonmacro problems GSAS-II python – computed in 65 lines & there is another 80 lines to export it in CCP4 format. Universal for all crystal structures.

Which is easier to understand and maintain?

New Hessian LSQ modified Levenberg/Marquardt-SVD Algorithm

Steps:

1. Compute $A_{ij} = \sum w \frac{\partial I_c}{\partial p_i} \frac{\partial I_c}{\partial p_j}$ **SLOW step**

2. Normalize
$$A'_{ij} = A_{ij} / \sqrt{A_{ii}A_{jj}}$$

- 3. compute $\chi^2(p)$
- 4. Select λ (=0.001)
- 5. Modify $A''_{ii} = A'_{ii}(1+\lambda)$
- Make SVD inversion of A"
- 7. Solve for δp (unnormalized!) & compute $\chi^2(p+\delta p)$
- 8. If $\chi^2(p+\delta p) > \chi^2(p)$ then $\lambda^* 10$ go to 5
- 9. Else apply δp to p & go to 1 (new cycle)
- 10. Quit when $\chi^2(p) \chi^2(p+\delta p) / \chi^2(p) < 0.0001$

NB: all in ~40 lines of python; all double precision NB²: this thing is exceedingly robust

FAST steps

GSAS-II CODE DISTRIBUTION (LINES OF CODE & COMMENTS)

Approx. 100,000 lines of python in GSAS-II = 3.3Mb + 11Mb binaries vs 125,000 lines of Fortran in GSAS (16Mb in gsaskit) NB: 29 GSAS-II tutorials are ~0.6Gb!

16

Plot & console in separate frames

THE PLOTS - ADVANCED VISUALIZATION

MORE PLOTS IN GSAS-II: NUMBERS AS PICTURES

2D IMAGE CALIBRATION & INTEGRATION

Where is the incident beam on the detector?

Fit2D (& DataSqueeze) – assumes center of the diffraction ellipse - False Analysis – G.P. Dandelin,

Noveaux memories de l'Academie royal de Bruxelles, 2, 171-202 (1822)

Taken from Dandelin's original paper; p.202 Fig. 1: Shows the 2 spheres in contact with plane EA

- line SO is cone axis
- F&D are the ellipse foci on the plane He refers to a work by M. Quetlet as having previously made this construction - source?

This is not something new!

Dandelin sphere construction used in GSAS-II for image plate orientation calibration

2D IMAGE CALIBRATION (REPLACE FIT2D)

Correct calibration for tilt

Dandelin sphere construction (1822)

AFTER IMAGE PROCESSING IN GSAS-II – STAY IN PROJECT FILE

PEAK PICKING, FITTING & INDEXING

Powder Patterns Peak Widths PWDR 11bmb_8716.fxyd 250 200 http://www.article.com/articl	e Bank 1		2	Ind (sa	exing me a	g – C Is in	oeh topa	lo al(is)	gorith	m	
150 - 100											
Z-theta = 2.0/6 d = 11.40//5 q = 0.550/8 sqrt(i	Indexing Result: M20 X20 u	use Bravais	а	Ь	с	alpha	beta	gamma	Volume K	беер	
	874.25 0	P2/m	7.71409	8.66281	10.80844	90.000	77.017	90.000	703.82		
	874.25 0	P2/m	7.71409	8.66281	10.80844	90.000	102.983	90.000	703.82		
	874.25 0	P2/m	7.71409	8.66281	10.80844	90.000	102.983	90.000	703.82]	
	874.25 0	P2/m	7.71409	8.66281	10.80844	90.000	102.983	90.000	703.82		
	27.33 10	P2/m P2/m	7.71409	3.66989	10.80913	90.000	102.983	90.000	298.19	1	
	27.33 10	P2/m	7.71447	3.66989	10.80913	90.000	102.991	90.000	298.19]	
	5.31 10	P2/m	7.71864	3.90344	10.80061	90.000	103.013	90.000	317.06		-
											.d

STRUCTURE SOLUTION

Charge Flipping 3D & 4D

SEQUENTIAL PEAK FITTING – OBSERVATION OF STRAIN – SNS VULCAN DIFFRACTOMETER

Sample: ¹/₄" stainless steel rod, 1 min exposures over 13+ hrs

m ~800 patterns

Cycle tension – compression loading

One pattern – single peak fits: 6 lines Follow vs time & loading

~800 TOF POWDER PATTERNS IN GSAS-II

Do sequential peak fitting – 6 peaks + background ~1.5 min to complete!

SOME SEQUENTIAL PEAK FIT RESULTS

Lots to explore here – all within GSAS-II

Austenite 111 position

Austenite 111, 200 & 210 intensity NB: note misalignment of 111, 200 vs 210 Crystallite reorientation under load Spikes (down) – beam dropouts

INCOMMENSURATE STRUCTURES IN GSAS-II

INCOMMENSURATE STRUCTURES N GSAS-II

Book: "Incommensurate Crystallography" S. van Smaalen

H=G+mq

G: substructure hkl m: +/- small integers q: modulation vector

For Na₂CO₃ q= 0.183,0,.319

Each reflection: hklm m=0 sublattice m≠0 superlattice

 Na_2CO_3 – single crystal X-ray data – h0l zone \rightarrow rows of spots don't line up

POWDER DIFFRACTION

Na₂CO₃ – 11BM @ APS room temp.

Includes m=-2,-1,1,2 superlattice reflections; Rietveld refinement includes 1st & 2nd order harmonics on position depending on atom

INCOMMENSURATE STRUCTURE SOLUTION

4D charge flipping; single crystal & powders (e.g. Pawley refinement)

Modulation of atom positions (Na1-y) Fit function – fourier series in tau

LATTICE MODULATION

Na₂CO₃ – single crystal data

Coordinated wave motion – Na lattice y motion/ CO_3 rocking motion Recall q= 0.183,0,319 so period ~6-7 on x & ~3 on z Possible modulations: positions, thermal parameters, site fractions (& magnetic moments)

INCOMMENSURATE STRUCTURES

Symmetry symbols – interpreted by GSAS-II (not lookup)

Space group + super symmetry symbol

e.g. $Na_2CO_3 - C2/m(\alpha 0\gamma)os$ Space group Modulation vector

Operators: conventional space group & 4th dim component

Possible modulation vectors: e.g. $\alpha\beta\gamma$, $\alpha0\gamma$, $0\beta0$, $\alpha1/2\gamma$, $1/2\beta0$ Translations: 0,s,t,q,h 1-4 of these Depend on space group GSAS-II shows legal choices

MODULATION MODELS

Position, thermal motion, site fraction & magnetic moment

- Position: on x,y,z
 - Fourier series sin & cos- symmetry allowed choices
 - Zigzag, sawtooth & block just 1, add Fourier for more terms

- Thermal motion:
 - Fourier series
- Site fraction:
 - Fourier series
 - Crenel like block but 0/1 (not +/- x)
- Magnetic moment
 - Fourier (odd terms only generally just 1)

INCOMMENSURATE STRUCTURES

Cases not allowed in GSAS-II

- 3+2 & 3+3 not allowed in GSAS-II
 - Too complex to deal with easily
 - 3-D 230 SG
 - For 3+1: 4,783 possible SG
 - For 3+2: 222,018 possible SG
 - For 3+3: 28,927,922 possible SG
 - But only a handful found not worth the hassle
- Ad hoc centering not allowed
 - 'X' space groups all have equivalent legal ones with transformation
- Other odd cases found in cif files not allowed
 - e.g. R-centered monoclinic

MAGNETIC STRUCTURES IN GSAS-II

MAGNETISM – SOME BASICS

Assumptions: unpolarized neutrons, ideal powder (no texture), elastic scattering – no cross term; sum intensities

Nuclear structure factor Magnetic structure factor
$$|F_{\mathbf{h}}|^{2} = \left|\sum_{n} b_{n} \exp\{2\pi i(\mathbf{h} \cdot \mathbf{r})\}\right|^{2} + \left|\sum_{m} \mathbf{q}_{m} p_{m} \exp\{2\pi i(\mathbf{h} \cdot \mathbf{r})\}\right|^{2}$$

All atoms

Magnetic ions only

GSAS-II: 2 phases1) "chemical" nuclear – all atoms2) only magnetic ions

Need not be same lattice/space group, but describe same atomic arrangement for magnetic ions.

STRUCTURE FACTOR – POWDERS & NO POLARIZATION

The p's & q's? (after Bacon, 1975)

 $\mathbf{q}_{m} = \mathbf{\epsilon}_{\mathbf{h}} (\mathbf{\epsilon}_{\mathbf{h}} \cdot \mathbf{K}_{m}) - \mathbf{K}_{m}$

 $p_m = \left(\begin{array}{c} e^2 \gamma \\ m_w c^2 \end{array} \right) S_m f_m$

 $\mathbf{\epsilon}_{\mathbf{h}}$ – unit vector || \mathbf{h} – diffraction vector \mathbf{K}_{m} – unit vector || magnetic moment on atom m \therefore \mathbf{q} small for \mathbf{h} || \mathbf{K} & large for $\mathbf{h} \perp \mathbf{K}$

0.539x10⁻¹²cm – similar to b_n e - electron charge $\gamma - neutron magnetic moment$ $m_N - neutron mass$ c - speed of light

S – magnetic moment (Bohr magnetons) f - 1-electron magnetic form factor

MAGNETIC FORM FACTOR - f_m

Fourier transform of unpaired e⁻ density: valence e⁻; outer shell Sharp fall off with Q (small d, etc.)

In GSAS-II: Form factor coefficients $\langle j_0 \rangle$ and $\langle j_2 \rangle$ (higher terms ignored)

$$f_m = C + \sum_{i=1}^4 A_i \exp\left(-\frac{B_i \sin^2 \Theta}{\lambda^2}\right) + \left(\frac{2}{g} - 1\right) \left[C' + \sum_{i=1}^4 A'_i \exp\left(-\frac{B'_i \sin^2 \Theta}{\lambda^2}\right)\right] \sin^2 \Theta_{\lambda^2}$$

Landé g factor = 2 for 1st row transition elements:

quenched orbital contribution In general $f_m \rightarrow 0$ for $\sin\Theta/\lambda > 0.5$; d<1.0 Tables from J. Brown (ITC-C) & Kobayashi K, Nagao T, Ito M. (Acta A67, 473-480, 2011) (No input for user tables; might allow additions/substitutions in coeff. tables if there is interest)

MAGNETIC FORM FACTORS

E.g. for Mn & ions – some valence sensitivity

GSAS-II uses the high spin versions where there is a choice -3^{rd} row transition elements (W-Ir) given by Kobayashi, et al.

MAGNETIC SYMMETRY IN GSAS-II

Symbol driven; 2nd setting (if appropriate); BNS settings (not OG)

- Symbol based: allows nonstandard space groups symbol interpretation yields operators (ITXC Vol I version! Thx to A. C. Larson's code)
- NB: does know that e.g. "F m -3 m" is really Fm3m
- Spin flip designation on generators (e.g. symbol components)
- Magnetic type IV by transformation from chemical cell (with constraints) & selection of magnetic centering type
- Grey groups by adding 1' to symbol (incommensurate only)
- \rightarrow all std & nonstd BNS designations reachable in GSAS-II
- Can be changed after input
- On the other hand:

Import Bilbao magnetic cif files: operators from mcif file (fixed – can't change 'em) Occasionally peculiar: NiO mcif has 32 centering ops!

BNS vs OG

GSAS-II choice: **BNS**

- OG Opechowski-Guccione(1965): 1651 distinct magnetic space groups in book (Litvin, 2013 available on line from IUCr; NB: >11,000 pages!). For type IV magnetic structures the unit cell does not generate the lattice of magnetic moments & requires fractional hkls for reciprocal lattice.
- BNS Belov-Neronova-Smirnova(1957): unit cell does generate complete magnetic lattice (e.g. type IV cell doubling with added lattice centering operations); hkl always integers. BNS set in Shubnikov, Belov, et al. book Colored Symmetry (1964).
- Stokes & Campbell compiled BNS/OG mag space group data computer readable (but only std versions & 1st setting).
- GSAS-II allows non-std versions (that can be symbol interpreted, e.g. "F d" a variant of Cc; something like "R 2/c" won't work). NB: GSAS-II always uses 2nd setting (inversion @ origin).
- Spin flips → Pnma: Pn'm'a, Pnm'a', etc. by choice; can be non-std
- Type IV Transformation tool to new cell & add lattice centering; moves atoms Pnma: P_anma, P_bnma, P_cnma, etc.

BILBAO MCIF FILES

~450 structures (Gallego, et al. JAC 49, 1750-1776, 2016)

- Tables: zero propagation vector, Type III, Type IV 1, 2 & 3 propagation vectors, & incommensurate magnetic structures (more later)
- All single phase with Jmol viewer to visualize; full set sym. ops. & lattice centering ops all with "time reversal" (+/- 1) operator; uses BNS system
- Thus, chemical cell & magnetic cell coincident; nonstandard settings (occasionally quite odd, cf. NiO example)
- GSAS-II uses ops (overrides symbol Interpretation) → draw structures & compute powder patterns, etc.
- Magnetic moments crystal axes components; Bohr magnetons. GSAS-II uses this convention.

NB: old GSAS used Cartesian magnetic moment components

MAGNETIC STRUCTURE ANALYSIS IN GSAS-II

Magnetic Rietveld refinement – 2 phase

Simple example – LaMnO₃ @50K (NIST- BT1)

Antiferromagnet Pn'ma' Fe @ 0,0,1/2 Mx,My,Mz allowed but only Mx >0 Mx= $3.678(19)\mu_B$

POWGEN DATA EXAMPLE

Cu_{1.04}Mn_{0.96}O₂ Type IV antiferromagnet (Bilbao 1.178 similar)

NB: something odd about POWGEN wts? Similar in LaB_6 fit 45

C2/m 5.554,2.885,5.902,104.354→ C-1 11.0866,5.7707,5.902, 90,104.354,90

4 linked Mn atoms: @ 0,0,0: Mx,My,Mz=1.70,0.65,0.67 Rest @ 1/4, 1/4,0; 1/2,0,0 & 1/4,-1/4,0

MAGNETIC INCOMMENSURATE STRUCTURES

Some examples:

CeRuSn – Ce moment

 $\beta\text{-Li}_2\text{IrO}_3$

 $DyMn_6Ge_6 - residual moment$

CeRuSn – structure modulation

CURRENT STATUS

GSAS-II & incommensurate/magnetic structures – still to be done!

- Incommensurate magnetic structures
 - Structure factor & derivatives math & refinement
 - Site symmetry rules for allowed Fourier coefficients
- Incommensurate structures
 - Certain high symmetry site symmetry rules (in tetragonal, trigonal & hexagonal)
 - Refinement of non Fourier functions (derivative issues)
- Magnetic structures
 - Structure solving aids i.e. selection of magnetic cell & space group from observed data

OTHER THINGS NEW IN GSAS-II

SMALL ANGLE SCATTERING – SIZE DISTRIBUTION

SMALL ANGLE SCATTERING – SEQUENTIAL DATA ANALYSIS

Ludox colloidal silica from Aldrich – dilution range

Fit – hard sphere; log normal - - X GSASII Plots distribution, size, mean, vol. fr. Powder Patterns log() Sequential result – find slope/intercept 10 GSASII Plots 10⁵ Powder Patterns Sequential refinement GSASII Plots 10⁴ Powder Patterns 0.25 $Intensity, cm^{-1}$ 0;Volume log(SASD S35 Ludo 10 104 0.20 10 10³ Parameter values 0.10 10¹ $Intensity, cm^{-}$ 10² 10⁰ 10¹ 10-3 10^{-4} 0.05 合 0 K 10⁰ q = 0.00011158 Intensity = 0.00 10-3 10-2 10-4 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 OA fraction data 个 0 0 < > ^ V <> >< 🗘 X q = 0.00010222 Intensity = 196.91 d press s to select X axis, t to change titles One fit

REFLECTIVITY

CW x-ray & neutron (no TOF yet)

CSASII Plots

Powder Patterns Scattering length density

MULTILAYER REFLECTIVITY

THANK YOU

