

EUROPEAN SPALLATION SOURCE

Diffraction instrumentation at ESS

26th June 2018

Werner Schweika, Neutron Instruments Division, European Spallation Source ERIC

User operation will start end of 2023 Impressions from the construction site

ESS: long-pulse 14Hz superior flux & brightness

ESS "Butterfly" Moderator

Instrument Suite

powder diffraction

very high intensity compared to existing instruments very flexible resolution due to pulse shaping

DREAM thermal and cold (+ nm-SANS)

HEIMDAL thermal (+SANS) multiple length scales

MAGIC polarized

separating magnetic neutron scattering ... and incoherent H ... These instruments have new ¹⁰B - detectors

- * high efficiency and
- * count rate capability
- 2D (3D) resolution single crystal diffraction texture

2D Rietveld J. Appl. Cryst. 48 (2015) 1627

J. Appl. Cryst. (2017) in press

powder & texture

EUROPEAN SPALLATION SOURCE

Engineering Diffractometer

BEER thermal and cold

Imaging & SANS in future

J. Fenske (HZG, Germany) P. Beran (NPI, Czech Republic)

TOF Laue diffraction

=> 3d Q space

EUROPEAN SPALLATION SOURCE

Instruments for single crystal diffraction MAGIC dedicated for magnetism - polarized **DREAM** unpolarized / higher resolution / 3D PDF (HEIMDAL) lambda=7.0e-01 A 30 Real time Laue pattern: 15s 20 10 sub-mm 0 D samples -10 -20 $1 \text{ mm}^3 \text{C}_{60}$ -30 0 20 40 60 80 100 120 140 160

NMX for macromolecular crystallography Esko Oksanen

Hydrogen positions

MAGIC

polarized cold & thermal beam

Magnetic structures Spin densities Local susceptibilities Frustrated magnetism Diffuse scattering

Diffraction Resolved by Energy and Angle Measurements

- General use powder diffractometer with novel capabilities, which will outperform in its first stage existing instruments by factor of 10 on day one
- In-kind contribution to ESS from Germany (FZJ – 75 %) and France (LLB – 25 %)

EUROPEAN SPALLATION SOURCE

One of the first 3 instruments to be built at ESS

DREAM Science Case

EUROPEAN SPALLATION SOURCE

magnetic nanoparticles core-shell structures

=> small samples

Resolution

EUROPEAN SPALLATION SOURCE

note: $\Delta \lambda \sim \text{const}$ at short-pulse spallation sources

DREAM can combine the virtues of NOMAD, POWGEN and SHRPD

DREAM - performance

full instrument MC simulations - VITESS Na₂Ca₃Al₂F₁₄ cubic (l2₁3) a = 10.257(1) Å 0.4 cm^3

Diffraction Resolved by Energy and Angle Measurements

How to deal best with the varying resolution function?

Using 2D and 3D detector information High pressure – very small samples

a great help for identifying weak signals in large background

Benchmarking full instrument MC simulations VITESS

reference $Na_2Ca_3Al_2F_{14}$ cubic (l2₁3) a = 10.257(1) Å

Benchmarking full instrument MC simulations VITESS

reference $Na_2Ca_3Al_2F_{14}$ cubic (l2₁3) a = 10.257(1) Å

High Resolution relevant for energy materials

 $Li_{1.2}Mn_{0.55}Ni_{0.15}Co_{0.1}O_2$ cathode Li-ion

 β -NaVOPO₄ cathode for sodium-ion batteries

EUROPEAN SPALLATION SOURCE

Nano Energy 36 (2017) 76–84

- Multi-phase materials with many overlapping peaks
- Energy materials often consist of amorphous phases which can not be refined by Rietveld method

from Mikhail Feygenson DREAM Nanostructures Powder diffraction + PDF + nm-SANS

EUROPEAN SPALLATION SOURCE

Enhanced catalysis in Fe_3O_4 – Au dumbbell nanoparticles

M. Feygenson et al, PRB (2015)

from HEIMDAL presentation at STAP 2017 HEIMDAL science case

EUROPEAN SPALLATION SOURCE

Next Generation Powder Diffractometer for for *In-Situ/In-Operandi Studies*

Science cases:

Energy materials, catalysts, cement Hierarchical systems, biominerals Structure of functional materials Crystallization/growth Magnetic phases Nanomaterials

Virtues:

High flux, low background Simple data treatment, ease of use

Flexible flux/resolution: Easily adjustable during the experiment

from HEIMDAL presentation at STAP 2017 Reduction experiments

from HEIMDAL presentation at STAP 2017 Texture

- HEIMDAL provides: Atomic structure Phase composition Texture Particle morphology – full scope
- During compaction at elevated:
 - Temperature (1000 °C)
 - Pressure (0.1 GPa)

from HEIMDAL presentation at STAP 2017 Diffraction tomography

high

low

Three-dimensional distribution of polymorphs and magnesium in a calcified underwater attachment system by diffraction tomography

