brightness

GA Meeting

Work Package 4: Innovation of key neutronic technologies: Detectors and Moderators

Richard Hall-Wilton, Work Package Manager

Mittuniversitetet

•

- The goal of BrightnESS was risk reduction for ESS
- The goal of the WP was technological risk reduction for key technologies
- Validating and realising these technologies
- Taking novel technologies selected for ESS from "Technological Readiness Level" 3-5 to 8-9
- Aim: helping a smooth start for ESS scientific output
- Timeline: September 2015 June 2018

BrightnESS is funded by the European Union Framework Programme for Research and Innovation Horizon 2020, under grant agreement 676548

brightness Technical Challenge for Detectors

Instrument Design	Implications for Detectors	
Smaller samples	Better Resolution (position and time) " Channel count	Task 4.1 The Resolution Challenge"
Higher flux, shorter experiments	Rate capability and data volume	Task 4.2: "The Intensity Frontier"
More detailed studies	Lower background, lower S:B Larger dynamic range	Task 4.4: "Detector Realisation"
Multiple methods on 1 instrument Larger solid angle coverage	Larger area coverage Lower cost of detectors	Task 4.3: "Realising Large Area Detectors"
Developments requi	red for detectors for	ESS

brightness Requirements Challenge for Detectors for ESS: beyond detector present state-of-the art

Overview of WP

- WP4 aim for the disruptive innovation in terms of the development and integration of neutron detectors and moderators currently needed directly and indirectly for 9 current and future ESS Instruments.
 - Timeline: September 2015 August 2018
- Purpose of Tasks:
- Task 4.1: The Resolution Challenge
- Task 4.2: The Intensity Frontier
- Task 4.3: Realising Large Area Detectors
- Task 4.4: Detector Realisation
- Task 4.5: Moderator Testing and Beamline Development

MB 2015 prototype built

and tested in BNC

brightness WP4: Project Management

EUROPEAN SPALLATION SOURCE

SPALLATION

LUND

SPALLATION

EUROPEAN

SPALLATION

- Work Package Manager: Richard Hall-Wilton
- Deputy Work Package Manager: Judith Freita-Ramos
- Purpose of Tasks:
- Task 4.1: The Resolution Challenge. Task leader: Michael Lupberger (CERN)
- Task 4.2: The Intensity Frontier. Task leader: Francesco Piscitelli (ESS)
- Task 4.3: Realising Large Area Detectors. Task Leader: Anton Khaplanov (ESS)
- Task 4.4: Detector Realisation. Task Leader: Hanno Perrey (Lund U)
- Task 4.5: Moderator Testing and Beamline Development. Task Leader: Laszlo Rosta (Wigner) (Migner)

brightness

WP4 Status

- 12 (of 15) deliverables complete
- 18 (out of 20) milestones achieved •

- Budget will be spent according to consortium agreement
- On track: expected to complete by 31.8.2018 •

Status of KPIc	КРІ	Planned number (project)	Actual number (@M32) (Detectors)
from WP4	Number of publications on neutronic technologies	7	23 (will be >30 by end of BrightnESS)
act to ESS:	Number of participation in conferences related to neutronic technologies	23 (3 Data + 20 Detectors)	54
e now a sk item	Number of developed open source software packages	6 (2 Data + 4 Detectors)	7
	Number of successful simulations	6	16

The biggest impact to

Detectors are no "normal" risk i

brightness Activities and results not (yet) achieved

- All activities on track to be completed by 31.8.2018
- Milestones:
- MS28: Task 4.5: Verification of moderator and EPSI components. *Components complete of under fabrication. Expected during July.*
- MS31: Task 4.1: Module of detector ready for deployment. *Expected within 4-6 weeks.*
- Deliverables:
- D4.11: Task 4.4: Standardised test procedures for performance of detectors for early ESS instruments. *Work completed. Awaiting writing of report. End July.*
- D4.13: Task 4.1: Module for NMX detector. *Work expected to be complete in 6 weeks. Deliverable in August.*
- D4.14: Task 4.3: Large area detector for spectrometry. *Work complete in <4 weeks. Deliverable end July.*
- D4.15: Task 4.5: Final verification for BRR moderator. *Majority work completed. Final verification in August, deliverable follows.*

brightness Financial Status

EUROPEAN SPALLATION SOURCE

- Spent 81% of total at 86% through the project
- On track to spend according to plan
- Will continue to monitor costs towards end of project

Overall spending M1-M31

Results

Neutron Detectors

Efficient neutron converters a key component for neutron detectors

brightness Task4.1: The Resolution Challenge

- Ultra-high position resolution of neutrons
- Particle track analysis
- ⁶LiF or ¹⁰B₄C coating

EUROPEAN

- Even the smallest features of the Siemens star are visible
- 10um

50 um

100 um

brightness Task4.1: The Resolution Challenge

Large area Timepix detector Widepix4x5 covered with $6\mbox{LiF}$

Si-based neutron detectors for ultraresolution have arrived Neutron radiography of a lighter

BrightnESS is funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 676548

Task4.2: The Intensity Frontier

brightness

brightness

brightness Task4.3: Realising Large Area Detectors

Technology Demonstrators of Scientific Performance planned for: CNCS@SNS and SEQUOIA@SNS

Multi-Grid Design Invented by ILL, codeveloped ILL-ESS

substrate

¹⁰B₄C layer

BrightnESS is funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 676548

Figure 1: Scheme of the gas delivery system

10

 $\langle \langle \rangle \rangle$

brightness Task4.4: Detector Realisation: Simulation

New tools & utilities are recently developed for neutron

10-4

10

-1.0

-0.5

... and optimise it before building it

0.5

0.0

Neutron energy [meV]

brightness Task4.4. Detector Realisation

- Source Facility available at Lund University
- Detector testing possibility in Lund with (fast and thermal) neutrons, gamma
- Heavily used for all ESS detector activities

brightness Task4.4: Detector Realisation

- An integrated plan for integrated detector readout
- For all parts of system, prototype hardware exists

Interface between WP4 and WP5 a key interface for ESS instruments The sum of this interface defines the data acquisition path for neutron detector data at ESS

Interface shared, understood, manned and demonstrated

brightness Task4.5: Moderators and Test beamline

Solid boron converter neutron detector for source imaging

> Wavelength resolved imaging measurements of the BNC moderator brightness

wavelength [A°]

Next steps

- 4 WP4 deliverables remaining
- 2 WP4 milestones remaining
- Continuing impact of BrightnESS after end of project
- (open dissemination of results, seek opportunities for continuation of collaborations developed, integration into the ESS construction of detectors for instruments)

Richard Hall-Wilton Detector Group Leader European Spallation Source ERIC Mobile: +46 72 179 2089 E-mail: richard.hall-wilton@esss.se In terms of ESS project risk, impact of BrightnESS is to move detectors and novel moderators from being high risk technical items into a normal level of risk

BrightnESS reduces the level of risk for the delivery of the ESS project

A big thank you to all our partners for a successful project

MB 2015 prototype built and tested in BNC

Overview of WP

- WP4 is a technical work package focussed on challenges in neutronic technologies
- WP4 aim for the disruptive innovation in terms of the development and integration of neutron detectors and moderators currently needed directly and indirectly for 9 current and future ESS Instruments.
- Technological risk reduction for the delivery of the ESS project
- By enhancing moderator and detector capability, maximise the early science impact of ESS
- Fundamentally in-kind and collaborative tasks, relying on the expertise of partner institutes involved

