

Beam Commissioning at ESS

Ryoichi Miyamoto (ESS/AD/BPOD/BP)

Workshop on Testing and Commissioning 16-17 October, 2018

Outline

- Beam commissioning overview
 - Planning
 - Configuration
 - Note on beam physics
- Summary

What I'm doing...

Planning phase

- Identify required activities with beam and their dependencies.
 - Primary focus is on beam physics related activities, e.g., RF cavity setting.
 - Also including hardware verifications with beam, e.g., diagnostics verifications.
- Define a sequence of the activities based on the dependencies and priorities.
 - Have no authority to change the term allocated to a beam commissioning stage. (Only provide feedbacks to the integration, testing, and commissioning planner.)
- Help to develop (or do develop) a procedure of each activity.
- Maintain and update the plan.

Execution phase

- When the beam is available, determine conducted activities based on the plan and other conditions, e.g., availability of subsystems and personnel.
 - Availability of the beam itself is determined by the system owners and operations.
- Help to conduct (or do conduct) each activity.
- Is one of the primary stakeholders to permit (the shift leader) to use a new machine configuration and beam parameter envelope.
 - In the control room, the shift leader is in charge of these.
- Maintain and update the plan.

Beam commissioning stages and schedule

Stage	Energy [MeV]	Start date (old)	Start date (baseline)	Start date (update)	Duration [weeks]
ISrc - LEBT	0.075	2017-11-20	2018-06-28	2018-09-19	22
ISrc - DTL1	21	2018-11-05	2019-11-04	2019-11-11	14
ISrc - DTL4	74	2019-01-21	2020-04-27	2020-07-13	13
ISrc - dump (BOD)	~570	2019-05-13	2021-02-08	2021-04-26	13
ISrc - target (BOT)	~1370	2019-06-24	2022-06-08	2022-06-08	

- Focus now is on the ongoing ISrc-LEBT and the following NC linac stage.
- Schedule is driven by deliveries and installations of components. The sequence of beam commissioning activities is laid out to fit to the allocated time.
 - No contingency for unexpected interventions.
 - Every step has to be well prepared and executed as planned.
 - Possible to run out of time (e.g., before starting current ramp-up).
 - Doing better (e.g., including realistic contingency) is harder when the plan is not so stable.
- Beyond the ISrc-LEBT stage, we use internal and permanent beam stops and diagnostics devices. This allows us to come back to a state of the preceding stages.
 - The linac includes a thorough set of permanent diagnostics devices.

Planning example of commissioning steps: ISrc-LEBT

< TYPE	KEY	SUMMARY	ASSIGNEE	STATUS	START DATE	END DATE	LABELS	*
•	NCLIN-5	 	Edgar Sargsyan	IN PROGRESS	2018-Apr-17	2018-Jul-17	P6	☆
1	NCLIN-6	☐ Ion Source and LEBT Beam Commissioning - h5.	Ryoichi Miyamoto	TO DO	2018-Sep-03	2018-Nov-30	P6	
	NCLIN-314	─ Systems Verification with Beam - h5. Overview *	Ryoichi Miyamoto	TO DO	2018-Sep-03	2018-Sep-19	BeamComm	
☑	NCLIN-316	─ Mid-point Characterization - h5. Overview * Dural.	Ryoichi Miyamoto	TO DO	2018-Sep-20	2018-Oct-05	BeamComm	
☑	NCLIN-400	Chopper installation, testing, and verification -	Ryoichi Miyamoto	TO DO	2018-Oct-08	2018-Oct-12	BeamComm	*
	NCLIN-317	─ Steering & Solenoids Scan - h5. Overview * Dural	Ryoichi Miyamoto	TO DO	2018-Oct-15	2018-Oct-26	BeamComm	
	NCLIN-318	─ Beam Modes Verification - h5. Overview * Duration	Ryoichi Miyamoto	TO DO	2018-Oct-29	2018-Nov-09	BeamComm	
☑	NCLIN-320	─ RFQ Matching Preparation - h5. Overview * Dural.	Ryoichi Miyamoto	TO DO	2018-Nov-12	2018-Nov-23	BeamComm	
	NCLIN-321	■ Stability Check - h5. Overview * Duration: 1 week	Ryoichi Miyamoto	TO DO	2018-Nov-26	2018-Nov-30	BeamComm	
	NCLIN-7	LEBT Partially Dismantled for RFQ Installation - Note:	Janet Schmidt	TO DO	2018-Sep-28	2018-Oct-04	P6	ౕ∖

- High-level plan and strategy, in terms of beam physics, has been presented in internal documents (e.g., ESS-0149990 for NC linac) as well as in conferences and workshops.
- Steps and sub-steps of the ISrc-LEBT stage has been maintained and updated in Jira.
- Steps and sub-steps of the ISrc-DTL1 stage has been developed in Jira.
- How to prepare for each sub-step is up to the responsible person.

Planning example of commissioning sub-steps: ISrc-LEBT

Beam modes

~0.01 µs

7

~0.01 µs

Mode	Current [mA]	Duration [μs]	Rep [Hz]
Probe	~6	≤ 5	≤1
Fast tuning	≤ 62.5	≤ 5	≤ 14
Slow tuning	≤ 62.5	≤ 50	≤1
Long pulse verification	≤ 62.5	≤ 2860	≤ 1/30
Production	≤ 62.5	2860	14

5-2860 μs

Beam stops

Location	Туре	Availability	Tuning	Long-pulse	Production
LEBT (inside tank)	FC	Permanent*	Yes	Yes	Yes
LEBT (outside tank)	FC	Temporary*	Yes	Yes	Yes
MEBT (inside tank)	FC	Permanent	Yes		
DTL2 (intertank)	FC	Permanent	Yes		
DTL4 (intertank)	FC	Permanent*	Yes		
Spokes (doublet #1)	Stop	Permanent	Yes		
Medium-β (doublet #6)	Stop	Permanent	Yes		
Dump line	Dump	Permanent	Yes	Yes	
Target	Target	Permanent	Yes	Yes	Yes

Full list of diagnostics devices (From the lattice synoptic viewer)

	ISrc	LEBT	RFQ	MEBT	DTL	SPK	MBL	HBL	HEBT	A2T	DmpL	Total
FC		1		1	2							4
IBS						1	1					2
ВСМ	1	1	1	2	5		1	1	2	3	2	19
FBCM				1								1
FBPM				1								1
Dpl		1										1
ВРМ				7	15	14	9	21	16	12	4	98
BIF		2		2						1		5
IPM						1	3	1				5
EMU		1		1								2
LBM				1		1	1					3
WS				3		3	3	1	3	1		14
AptM										3	1	4
Img										2	1	3
nBLM				4	42	26	2	2	2	4		82
icBLM					5	52	36	84	49	34	6	266

ISrc- LEBT commissioning configuration (Plan)

ISrc- LEBT commissioning configuration (How we started on 2018-09-19)

ISrc- LEBT commissioning configuration (How we started on 2018-09-19)

NC linac commissioning configuration (updated)

Limits during the NC linac commissioning (ESS-0118232 under revision)

- This configuration (FC shielding + wall) allows the NC linac beam and SC linac installation in parallel.
- Prompt dose limit:
 - 3 μSv/h (supervised area)
 - Averaged over 1 hour
- Limits in dose and FC itself are comparable.
 If either is missing, the beam very limited.

FC	Energy [MeV]	Ave curr lim [μΑ]	Probe lim [min/hour]	Slow-tuning lim [min/hour]	Fast-tuning lim [min/hour]
DTL4	22	8.8			
	40	3.0		57	41
	57	1.4		26	19
	74	1.2		23	16
DTL2	22	8.8E-3	17	0.1	0.1
	40	3.0E-3	6	0.0	0.0

No special configuration after the NC linac commissioning

- The beam is stopped with internal beam stops, tuning dump, or target.
 - The tuning dump could bear with the 2.86 ms pulse but only at 1/30 Hz (12.5 kW).
- Only available number of cryomodules change over time.

Simple and or standard tuning

Standard linac/beamline tuning, requiring a dedicated application:

- Linear optics verification
 - Polarity check
 - Beam based alignment
 - Trajectory correction
- RF phase and amplitude setting
- Transverse matching with 3+ profile measurements
- Online beam physics application and diagnostics devices are keys to efficient beam commissioning.
- Further details on tuning were presented in the past conference, workshops, and reviews.

For beam transports and RFQ, many adjustments are done with a simple parameter(s) scan:

- LEBT
 - Iris verification
 - Chopper verification
- RFQ
 - Amplitude scan
 - Matching with LEBT solenoids scan
- MEBT
 - Chopper verification
 - Collimator positioning
- A2T (including dogleg)
 - Achromatic condition verification
 - Cross-over point verification
 - Raster verification

Could-be-challenging tuning (Excluding operational challenges such as protection)

- ISrc optimization
 - Unlike H- machines, we need to balance the current and beam quality.
- Optics tuning of the non-periodic MEBT
- Twiss and emittance reconstruction with a quad or cavity scan
 - Space charge and beam loss require extra care.
- Matching at the frequency jump
 - Frequency jump at the SPK-MBL interface is the weakest point of our linac and requires a smooth matching. But, there is no nearly direct longitudinal measurement.
- Beam loss mitigation
 - We don't have the obvious beam loss cause of H- stripping.

Summary (and questions)

- Status of planning beam commissioning activities and their sequence:
 - For the ISrc-LEBT stage, the developed plan is being executed and also updated to adopt to situation.
 - For the NC linac stage, plan is being detailed.
 - For the SC linac stage (starting in ~2.5 years), due to a resource limitation, we only have very high-level plan (and studies).
 - Is there a rule of thumb for contingency of the beam commissioning?
 - How detail we plan for each activity.
 - Controlled document vs piece of code.
- The schedules of the stages beyond the ISrc-LEBT are aggressive but using internal and permanent beam stops and diagnostics allow to come back and repeat the process in any given point, later.
 - On the contrary, the ISrc-LEBT stage is unique.
 - Comments/suggestions on this strategy?

Backup

ISrc- LEBT operations configuration

NC linac commissioning configuration (baseline)

