

Elettra Sincrotrone Trieste

The ESS Wire Scanner EPICS IOC

Stefano Cleva

Elettra Sincrotrone Trieste

Intro - 1

Original plot of the block diagram (since PDR2) ... still valid

Intro - 2

Two layers SW architecture

- The High Level Layer (client side) is in charge of human interaction activities;
- The Low Level Layer (server side) is in charge of all kind of activities/functions strictly related to the WS operation:
 - Motion control: On The Fly and Step By Step trajectory management;
 - Data acquisition synchronized by/with the timing system;
 - Elaboration of the acquired raw data (raw means buffered by the underlying layer) accordingly to specified algorithms in order to calculate the beam profile;
 - State management (normal operation, alarms, ...);
 - BE control;
 - Auto-diagnosis function that checks the sanity of the ancillary equipment, both hardware (BE/AFE/OFE) and software (acquisition/timing/motion control underlying IOC);
- Constraints:
 - EPICS and CSS based;
 - Motion control (mctc demo) and "ACQ + Timing" (SIS8300 + EVR) sub IOCs are in charge of ESS;

IOCs Hierarchy

IOCs hierarchy

- At the bottom level are located the:
 - motion control (MCTC) IOC;
 - Acquisition plus Timing IOC (EVR-MTCA + SIS8300);
 - They act as servers for the upper level;
- At the top level is located the WS-IOC:
 - It is triggered by the SIS8300 acquisition buffers;
 - It fetches the data buffered by SIS8300;
 - It acts on MCTC in order to scan the beam;
 - It reads back the positions from the MCTC IOC;
- The Operator Interface/Engineer Panel interacts with the WS-IOC by the Channel Access Protocol

WS-IOC and AFE/OFE

AFE/OFE and WS-IOC

- Depending on the detecting mechanism (wire/optical), two kind of Front End have to be managed:
 - AFE: electrically connected to the scanning wires;
 - OFE: optically connected to the optical fibers of the scintillators;
- The amplifying hardware and data elaboration are different;
- ✓ At moment only the AFE case ("iocsh wsAFE.cmd") has been fully validated;
- The OFE has been developed and is almost ready to be laboratory tested;

Simplified Block Diagram - AFE

Server Side (WS-IOC – AFE) simplified block diagram

Server Side (WS-IOC – OFE) simplified block diagram

The ESS Wire Scanner EPICS IOC

Lund, 20→22 Nov 2018

Signal Processing Chain (triggered data processing pipeline)

- The sequence of operations required to obtain the beam shape have been split in a "pipeline" manner;
- Each stage of the pipeline performs a simple action;
- Any stage is triggered by the previous one and triggers the next stage;
- A state machine has been introduced in order to manage the "out of pipeline" (e.g. asynchronous) operations (trajectory scan);
- This model fits the EPICS "scan passive" concept;
- ✓ A set of forward links triggers the data flow;
- Periodic actions like IOC supervision are performed by periodic tasks (periodically scanned records);
- ✓ The primary trigger source is the event generated by the EVR in "EVR-MTCA" IOC;
- ✓ The event generates an IRQ that triggers the ADC acquisition (ACQ) in "SIS8300" IOC;
- ✓ Once ACQ buffers are available a CA forward link triggers the WS-IOC pipeline;

Pipeline Stages (AFE)

- 1st: triggered by the "xxx:PropagateHWtriggerHV.PROC" CA FLNK, it processes a fanout record that triggers the following data fetching:
 - SIS8300 buffers (Ai* \rightarrow WSInBuf*);
 - EVR-MTCA event counter (Event-X-Cnt-I \rightarrow TrigSeqNum);

When WSInLG_H and WSInLG_V records processing ends two FLNK are triggered:

- DetectSaturationAndSelectArray_H: H data path processing;
- DetectSaturationAndSelectArray_V: V data path processing;
- \checkmark 2nd: it is the most critical because it must:
 - detect saturation effects in the input arrays. If both High Gain and Low Gain arrays are saturated a warning flag is set;
 - scale the input signals according to the AFE analog parameters (offset and gain);
 - calculate the LG channel array if the HG one is saturated;
 - select which array must be propagated (HG, LG or LG "gray zone");
 When this stage ends two FLNK are triggered to process:
 - DetectProfile_H;
 - DetectProfile_V;

Pipeline Stages (AFE)

- ✓ 3rd: this stage calculates the significant parameters of the previously processed arrays, basically the areas selected by user set markers. A number of algorithms is available (RMS, mean, ABS, background subtraction) to assess the (3) selected portions of the input signal.
- 4th: this stage merges the measured signal amplitudes and the scanned positions. Depending on the type of scan, the Trajectory Scan State Machine controls the record that collects the data necessary to build the beam profile:
 - OtF: position driven;
 - SbS: trigger driven;

In both cases the H and V arrays containing the beam shape are filled sample by sample.

Once the trajectory has been fully scanned, a user selectable fitting algorithm is applied;

Trajectory scan

- Starting and ending positions, scan speed, step size and number of shots can be user or automatically configured;
- At the end of the "fast" wire insertion in the vacuum chamber (A segment, RAW profile estimation stage), automatic trajectory scan parameters are calculated (B interval);
- ✓ B, D, F: temporary stages that allow the MC to change its (speed, position) configuration;
- ✓ C, G: temporary stages to/from the "useful" beam span E;
- \checkmark The "fine" scan is performed in the E;
- ✓ The "fine" shape is calculated in the H segment;
- Calculations are always performed only when the wire is put in "safe" positions;
 position

Pipeline Stages (OFE)

- ✓ Basically the same as AFE ("simpler" because array "switching" is not required);
- ✓ 4 input channels couples are used (8 input signals);

Other notes about OFE

- ✓ The greater number of input signals doesn't affect the global SW architecture;
- ✓ The BE must know if it is connected to AFE or OFE;
- ✓ It is difficult to maintain inside the same IOC the AFE and OFE data path differences;

ADC IN channels

The ESS Wire Scanner EPICS IOC

Lund, 20→22 Nov 2018

WS IN channels

Select&Scale input signal – AFE only

- Two signals are acquired per plane: WSInLG_H, WSInHG_H (H plane), and WSInLG_V, WSInHG_V (V plane)
- It is mandatory to compensate the gain change of the LG amplifier when HG amplifier saturates
- Saturation is detected when the portion of the signal inside the ROI exceedes the following thresholds:
 - field(INPC, "\$(user):HiSaturationThreshold_V NPP")
 - field(INPD, "\$(user):LoSaturationThreshold_V NPP")
 - field(INPE, "\$(user):SaturationLenghtPercentage_V NPP")
 - The following compensation is adopted when:
 - HGsignal= (HG -HG OFFS) * HG GAIN HG is not saturated at all;
 - LGsignal = (LG L_OFFS) * LG_GAIN HG is not saturated inside ROI;
 - LGsignal =((LG L_OFFS) * LG_GAIN_HI) + LG_OFFS_HI HG is saturated inside the ROI;

Markers

A brief review (PDR2)

Beam

The ESS Wire Scanner EPICS IOC

Simulated Beam – Lab (VIT)

The ESS Wire Scanner EPICS IOC

Lund, 20→22 Nov 2018

Motion

Motion

The ESS Wire Scanner EPICS IOC

Lund, 20→22 Nov 2018

BE

ADC in channels	WS IN channels	markers	beam	motion	Back End
					,
BE bits readbac	k				
255					
BE status readb	ack				
0:+0:255:0x12	2:1:R:12912:A02				
BE voltage					
+0					
BE temperature	9				
ко					
BE set voltage					
BE set bits					
BE set pulses n	umber for wire test				
50					
50					
BE set input she	ort				
0					
BE set gain					
			в	E reset)
					7

BE control - 1

BE – PIC db

```
record(stringin, "$(user):ReadStatus") {
  field(DTYP, "stream")
  field(INP, "@ws_protocol.proto ReadStatus asynstream")
  field(SCAN, "2 second")
}
record(stringin, "$(user):ReadBits")
record(stringin, "$(user):ReadGain")
record(stringin, "$(user):ReadVoltage")
record(stringin, "$(user):ReadTemp")
. . .
record(stringout, "$(user):SetVoltage") {
  field(DTYP, "stream")
  field(OUT, "@ws_protocol.proto SetVoltage asynstream")
}
record(stringout, "$(user):Default") //reset//
record(stringout, "$(user):SetBits")
record(stringout, "$(user):SetPulseNumberForWireTest")
record(stringout, "$(user):SetPulseTimeForWireTest")
record(stringout, "$(user):SetGain")
```

• • •

BE control - 2

BE – PIC protocol

```
ReadStatus {
  out "RS?";
  in "%s";
  ExtraInput = Ignore;
}
ReadVoltage - out "RV?";
ReadBits - out "RB?";
ReadGain - out "RG?";
ReadTemp - out "RT?";
. . .
SetBits {
  out "SB:%s";
  in "%{OK|KO}";
  ExtraInput = Ignore;
}
SetPulseNumberForWireTest - out "SP:%s";
SetPulseTimeForWireTest - out "SC:%s";
SetGain - out "SG:%s";
SetVoltage - out "SV:%s";
Default - out "DF";
```


Log – (CERN, Linac4) – discontinued feature

Trajectory Scan State Machine

state ScanStepByStep //position oriented//

```
GetScanSetup
GetMCTCstate
HomeMCTC
(MCTCerror)-> ManageError(ErrorCodeStepBySTep_GetMCTCstate, ErrorCodeStepByStep_HomeMCTC,
CheckRetVals)
I(OK)-> CheckWire
 -> ScanStepByStep
state ScanOnTheFly //speed oriented//
GetScanSetup
GetMCTCstate
HomeMCTC
(MCTCerror)-> ManageError(ErrorCodeOnTheFly GetMCTCstate, ErrorCodeOnTheFly HomeMCTC,
CheckRetVals)
I(OK)-> CheckWire
I-> ScanOnTheFly
state CalculateStartStopStepSpeed
GetFastScanBuffers
Calculate Start, Stop, Step, Speed for slow scansion
```

|(error)-> ManageError(ErrorCodeCalculateStartStopStepSpeed)

```
|(OK)-> SetGetCheckAcq0
```


Some Tests Performed

CERN - Linac4

- Data Acquisition ability: PASS
- Pipeline mechanism: PASS
- Detecting and switching algorithms: PASS
- ✓ BE control: PASS
- Log mode: PASS (this feature was used only for E-ST debug)
- Beam Profile Building algorithm: NA (motion controller not available, only post processing was feasible)

E-ST labo

- Trigger frequency increased to 20 Hz: PASS (! mctc warning)
- Trajectory scan both OtF and SbS: PASS
- ✓ Full beam scan simulation: PASS (! 1Hz repetition rate)
- WARNING: it seems that the maximum CA refresh frequency (camonitor) of the motion controller IOC is 5 Hz, see next slides

VIT@Lund (August 2018 – wsAFE)

- ✓ Porting from EEE to E3 (many thanks to Lund Team (J.P., C., …))
- ✓ Full functional test: PASS
- ✓ IOC code "delivered" to ESS (bitbucket/europeanspallationsource/m-epics-wirescanner)

The ESS Wire Scanner EPICS IOC

camonitor x:Positions -#10

- ✓ iocuser:Positions 2018-03-02 20:54:19.163954 10 15 0 0 0 0 0 0 0 0 0 0 0
- ✓ iocuser:Positions 2018-03-02 20:54:19.213752 10 15 15 0 0 0 0 0 0 0 0 0
- ✓ iocuser:Positions 2018-03-02 20:54:19.263757 10 15 15 15 0 0 0 0 0 0 0 0
- ✓ iocuser:Positions 2018-03-02 20:54:19.313626 10 15 15 15 15 0 0 0 0 0 0
- ✓ iocuser:Positions 2018-03-02 20:54:19.363777 10 15 15 15 15 15 0 0 0 0 0
- ✓ iocuser:Positions 2018-03-02 20:54:19.413019 10 15 15 15 15 15 15 0 0 0 0
- ✓ iocuser:Positions 2018-03-02 20:54:19.463545 10 15 15 15 15 15 15 15 0 0 0
- ✓ iocuser:Positions 2018-03-02 20:54:19.513234 10 15 15 15 15 15 15 15 15 0 0
- ✓ iocuser:Positions 2018-03-02 20:54:19.563448 10 15 15 15 15 15 15 15 15 15 15 0

0.05 s period – 20 Hz, the EVG Trigger frequency: OK!

MCTC limitation?

- V IOC_WS:Axis1.RBV 2018-03-02 20:48:01.812140 20.94
- IOC_WS:Axis1.RBV 2018-03-02 20:48:02.012988 21.36
- IOC_WS:Axis1.RBV 2018-03-02 20:48:02.213861 21.75
- IOC_WS:Axis1.RBV 2018-03-02 20:48:02.414765 22.14
- IOC_WS:Axis1.RBV 2018-03-02 20:48:02.615534 22.56
- IOC_WS:Axis1.RBV 2018-03-02 20:48:02.816206 22.98
- IOC_WS:Axis1.RBV 2018-03-02 20:48:03.016924 23.37
- IOC_WS:Axis1.RBV 2018-03-02 20:48:03.217634 23.79
- IOC_WS:Axis1.RBV 2018-03-02 20:48:03.418367 24.18

✓ 0.2 s period – 5 Hz

Vertical Integration Test

Test App - 1

Acceptance Test Support Application

😣 🕒 🗉 WS test help app (on dev-sc-01)	
CreateLogFile	
LogCalibrationTable	😣 🗖 🔲 WS test help app (on dev-sc-01)
GetIDN	CreateLogFile BE-AFEtest-undef 2018-11-16 22:40:58.html
ReadPIC	LogCalibrationTable
SetRampStep 13	GetIDN Agilent Technologies,33220A,MY44020530,2.02-2.02-22-2
GetAI8AI9-VerticalChannels	Deadpic 0:+0:255:0x122:1:8:6563:A02
GetAl6Al7-HorizontalChannels	
ramp	SetRampStep 13
CloseLogFile	GetAI8AI9-VerticalChannels
Quit	GetAl6Al7-HorizontalChannels
SetROI	ramp
GetROIval	CloseLogFile
CS1	Ouit
	SetROI
	GetROIval
	CS1

BE-AFEtest-undef 2018-11-16 22:28:56

Calibration Table:

#	current	units	Vscope	units	VpulserMax	units	VpulserMin	n units	RefLevelHiGain	units	RefLevelLoGain	units
1	10	nA	1.245	v	1.255	V	1.1	V	0.0	v	0.0	V
2	30	nA	1.27	V	1.285	V	1.1	V	0.003697	v	0.0	V
3	50	nA	1.28	v	1.295	V	1.1	v	0.003954	V	0.0	V
4	100	nA	1.31	v	1.322	V	1.1	V	0.005818	V	0.0	V
5	300	nA	1.336	v	1.346	V	1.1	V	0.009588	v	0.0	V
6	500	nA	1.348	v	1.36	V	1.1	V	0.013277	V	0.0	V
7	1	uA	1.37	v	1.383	v	1.1	V	0.022346	v	0.0	V
8	3	uA	1.42	v	1.45	V	1.1	V	0.075673	v	0.0	V
9	5	uA	1.45	v	1.48	V	1.1	V	0.111941	v	0.000477	V
10	10	uA	1.51	v	1.56	V	1.1	V	0.231239	v	0.001994	V
11	30	uA	1.695	v	1.8	v	1.1	V	0.664866	v	0.007636	V
12	50	uA	1.865	v	2.035	V	1.1	V	0.854769	v	0.04413	V
13	100	uA	2.26	v	2.6	v	1.1	V	0.85774	V	0.183188	V
14	300	uA	4.01	v	5.0	V	1.1	V	0.857473	V	0.563845	V

PIC-BE: 0:+0:255:0x122:1:R:3249:A02												
BE id: undef												
AFE id: undef												

SetRampStep - SetGenerator: 300 uA 5.0 V 1.1 V												
SetRampStep - GetGenerator: 300 uA 5.0 V 1.1 V												

Lund, 20→22 Nov 2018

Test App - 3

AI8 mean(ROI): 0.000424 V -- ROIIo: 500 -- ROIhi: 700 AI8 st.dev.(ROI): 0.000403 V -- ROIIo: 500 -- ROIhi: 700 AI8 mean(BKG): -0.000931 V -- BKGlo: 1400 -- BKGhi: 1800 AI8 st.dev.(BKG): 0.000392 V -- BKGlo: 1400 -- BKGhi: 1800 AI8 mean(ROI - BKG): 0.001355 V

AI8 st.dev.(ROI - BKG): 0.000011 V

The ESS Wire Scanner EPICS IOC

Lund, 20→22 Nov 2018

Conclusions

- ✓ The "final" release of the WS IOC for AFE (wsAFE) behaved fine during the VIT;
- ✓ The wsOFE is ready for Lab Test;
- \checkmark The refresh rate of the position is still limited to 5 Hz;

Elettra Sincrotrone Trieste

Liank You!

www.elettra.eu