



# Cold Linac NPM status

### Forum diags ESS at Lund November 20<sup>th</sup> 2018

CEA Saclay: P. Abbon, F. Belloni, F. Benedetti, G. Coulloux, C. Lahonde-Hamdoun, P. Le Bourlout, P. Legou, Y. Mariette, J. Marroncle, J.P. Mols, V. Nadot, L. Scola

ESS Lund: C. Thomas (NPM Project Leader) IPHI team for her collaborative spirit



# Outline



What since last diagnostics forum?

- First beam test at IPHI
- Working meeting at ESS
- Second beam test at IPHI

Analysis in progress for CDR Toward CDR

Planning







# First Beam test at IPHI Feb. 13<sup>th</sup> to April 12<sup>th</sup> 2018

IPHI: (Injecteur de Protons à Haute Intensité or Proton Injector at High Intensity)

### Proton beam accelerator at CEA Saclay

- $3 \text{ MeV} I_p < 100 \text{ mA} \text{up to cw}$
- RF = 352 MHz
- Injector: 95 keV



### Life is a long, but a quiet river...



### Delays

Component deliveries with important delays

 Most of then were postponed by few weeks, even months wrt the delivery date

the worst: last MCP received on January 4<sup>th</sup> 2018 (ordered on 29/6/17)

Vacuum: Problem with a leakage vacuum detector

Etc.

No time to test MCPs in laboratory, just an overlook on CCD cameras, HVs, Faster (strips)...

### Installation on IPHI (Feb. 13<sup>th</sup> 2018)

*Kind of IPHI commissioning:* working for the first time with an inner diagnostics. Starting data taking completely blind, but a FC, 2 ACCTs upstream and downstream the RFQ and BPMs not connected

- Problem with HVs (sparking)
- impossibility to work with Photonis pMCP, we gave up in mid March, send it back to Photonis and recovered it <u>July 11<sup>th</sup> 2018</u> → finally no beam test with a 2<sup>nd</sup> pMCP!



# DAQ, FEE & CS



Caramel and Syroco: delivered at Saclay by LPC Caen (end 8/17) Adaptation card for signal read-out

Cameras

- NPM (2): Epics development
- FPM (1): brought by Cyrille Thomas
- Scintillating screen: Iphi
- ISEG HVs: ±6, -15/+15 and -30/+30 kV delivered
  - potentiometer for MCP gain
  - Connection boxes for vHV

Motor for moving scintillating screen: GeoBrick is installed and checked.



### On deviated line



### Profile measurement on Y direction for avoiding dispersive plane!





# Design/test bench





Cold Linac NPM Status - diagnostics forum at Lund











### 1<sup>st</sup> beam!



#### Finally, beam appears on March 1st 2018!

#### **Beam direction**



but... it appears clearly that beam was moving top/bottom by few mm, and comes back regularly (several seconds)...

...like electric charging / discharging materials!

1 or 2 weeks later, BPMs were connected  $\rightarrow$ 





### pMCP (Hamamatsu) + CCD





Cold Linac NPM Status - diagnostics forum at Lund



### MCP and constant strips



#### MCP (Hamamatsu) + constant strips Read-Out: D. Etasse et al., Faster system LPC Caen, France.



#### Comparison MCP+strips/CCD

![](_page_10_Figure_6.jpeg)

![](_page_11_Picture_0.jpeg)

# Toward a second IPHI test

![](_page_11_Picture_2.jpeg)

First IPHI test results were presented at Lund during a Working Meeting on July 18<sup>th</sup>

Requested more time to study particularly:

- Space charge effect:  $\sigma_x$  for applying SC algorithm (Francesca & Cyrille)
- Interferences between two IPMs with perpendicular electric field  $(\overrightarrow{E_X}, \overrightarrow{E_Y})$
- Electric field homogeneity
- Reducing sparking
- Extrapolation IPHI data to ESS  $\rightarrow$  feasibility
- Read-Out choice: more data have to be taken with strip RO
- Etc.

Therefore, the test bench was a bit different

- IPM1 in X direction (≠width strips), IPM2 (Y-Photonis pMCP) and IPM3 (constant width strips)
- Grids in front of RO (thin mesh)

![](_page_12_Picture_0.jpeg)

![](_page_12_Picture_1.jpeg)

# Second Beam test at IPHI

Sept. 10<sup>th</sup> ... Oct. 19<sup>th</sup> 2018, with few days

IPHI: (Injecteur de Protons à Haute Intensité or Proton Injector at High Intensity)

### Proton beam accelerator at CEA Saclay

- $3 \text{ MeV} I_p < 100 \text{ mA} \text{up to cw}$
- RF = 352 MHz
- Injector: 95 keV

![](_page_13_Picture_0.jpeg)

## On IPHI deviated line

![](_page_13_Picture_2.jpeg)

![](_page_13_Picture_3.jpeg)

![](_page_14_Picture_0.jpeg)

### Preamble

![](_page_14_Picture_2.jpeg)

During Sept. 10<sup>th</sup> to Oct. 19<sup>th</sup>, we share the beam with other teams. Devoted time to NPM was about 2 weeks

Beamline was assembled to test a BPM of ESS Bilbao upstream to the NPM test bench. In order to protect the BPM (electrodes), a water cooling collimator with a 25 mm aperture was mounted upstream the BPM. Lot of electron background was generated.

![](_page_14_Picture_5.jpeg)

Beam prints on interceptive scintillating screen.

![](_page_14_Figure_7.jpeg)

Cold Linac NPM Status - diagnostics forum at Lund

![](_page_15_Picture_0.jpeg)

### First beam

![](_page_15_Picture_2.jpeg)

First beam was delivered on September 14  $\rightarrow$  the profile was directly measured Reminder: it took 2 weeks for the 1<sup>st</sup> beam test!

![](_page_15_Picture_4.jpeg)

Cold Linac NPM Status - diagnostics forum at Lund

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

This nice picture gives an idea about the quality of the electric field uniformity

![](_page_16_Figure_4.jpeg)

![](_page_17_Figure_0.jpeg)

Improvement of HV connection to increase electric field

#### Analysis under progress:

- $\cdot$  electron background subtraction  $\rightarrow$  hopeless to work in "electron mode"
- $\cdot$  Extrapolation to ESS condition  $\rightarrow$  this time the residual gas pressure was quite low (5 10<sup>-8</sup> mbar)
- Electric field uniformity
- SC
- Etc.

#### Goal: CDR on Feb. 5<sup>th</sup> 2019

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

# Toward CDR

![](_page_19_Picture_0.jpeg)

## To be done

![](_page_19_Picture_2.jpeg)

- Background from the beam → calculation by Mamad: important to determine the background which is supposed to pollute profiles
- Change request: grounded disks for IPM → Daresbury (letter sent by Cyrille on Feb. 2017)...
   CEA Saclay proposition sent to Paul on April 2018
- Improvement to be done on the final IPM
  → feedback from our tests and also from CDR

![](_page_19_Figure_6.jpeg)

![](_page_20_Picture_0.jpeg)

## Read-Out

![](_page_20_Picture_2.jpeg)

#### Hypothesis: seems that we are going to choose pMCP + CCD

- CCD: not radiation hard
  - CID camera (less sensitive...)
  - Camera set at remote distance → fiberscope (multi o.f. bundle for imaging) → see
    Cyrille Thomas who plan to test soon the radiation hardness of cheaper ones
  - Deposited power 1 to 10 Gy/h (Report ESS 00602018 1/2017)
- pMCP
  - Follow-up software with reference channels → correction on-line
  - MCP lifetime duration
    - → We learnt that Photonis has developed new MCPs increasing their lifetime
    - → We have proposed a specific assembling in order to replace them quickly and efficiently.

![](_page_20_Picture_13.jpeg)

![](_page_20_Picture_14.jpeg)

![](_page_21_Picture_0.jpeg)

# pMCP replacement: IPM<sub>Y</sub>

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_4.jpeg)

![](_page_22_Picture_0.jpeg)

# pMCP replacement: IPM<sub>X</sub>

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

IPM assembling, test and validation

- Assembling in a clean room and test/validation
- Design of a new vacuum chamber, to test:
  - Vacuum pressure 10<sup>-9</sup> mbar
  - HV sustaining 20, 30 kV
  - RGA (Residual Gas Analyzer) to be compliant with outgassing requirements
  - Check FEE electronics with a β source
  - → Plan to have a meeting with Saclay people working on CM (ok)

IPM storage / sending to Lund

• Storage pot N<sub>2</sub>, vacuum

![](_page_23_Picture_13.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_25_Picture_0.jpeg)

### Summary

![](_page_25_Picture_2.jpeg)

### NPM data taking

- $1^{st}$  IPHI test  $\rightarrow$  Working Meeting on July 2018 at Lund
- $2^{nd}$  IPHI test  $\rightarrow$  analysis is in progress for CDR around Feb.  $5^{th}$  2019
- $\rightarrow$  Lot of work done, starting from scratch

### **CDR** preparation

- Starting to work on MCP and CCD Read-Out compliant to ESS
- radiation environment
- Change request: grounded disks
- Improvement of IPM
- Assembling, test and Validation in clean room
- Wrapping of IPM for Lund delivery
- ... a long way!

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

# EMU repairing

### O. Tuske, N. Misiara, P. Daniel-Thomas

![](_page_27_Picture_0.jpeg)

## Damage 1: Transportation

![](_page_27_Picture_2.jpeg)

Damage 1: happens during the EMU transportation between CEA Saclay (Dec. 8<sup>th</sup> 2016) and INFN Catania (Dec. 12<sup>th</sup> 2016)

- The bellow of the EMU has been damaged in its wooden box
- The wounded undulations of the bellow have been bended back in Catania premises.
- Leak test before and after: no leak!
- $\rightarrow$  INFN takes the risk to used it

ESS will pay for a new bellow CEA STAFF will make the change as soon as EMU is back to Saclay.

### [CEA-ESS-DIA-NC-0001.pdf]

![](_page_27_Figure_10.jpeg)

# Damage 2: translation problem

![](_page_28_Picture_1.jpeg)

Damage 2: once INFN Catania has installed the EMU on the LEBT end, they encountered translation problem on July 21<sup>st</sup> 2017

The measurement head has crashed into the diagnostic chamber

- → Ceramic connectors bent
- → Collector connectors twisted...

INFN STAFF made the reparation They fixed it as well as they could to resume test measurement activities.

![](_page_28_Picture_7.jpeg)

# Damage 3: Thermal problem

![](_page_29_Picture_1.jpeg)

Damage 3: during measurements on the proton source beam at Catania, a thermal damage <u>most likely</u> (since no data available) caused by a too much focalized beam onto the EMU beam dump and slit (27/11/2017) induced a scratch on the beam dump and the closure of the slit aperture.

AS no-DATA was send to CEA to explain how this incident occurs, we can only guess that the power density of the beam was much higher than expected / requested.

THE SLITS have been damaged: leaks on pipe/slit brazing...

ESS pays for a new slit CEA staff installed it freely

*The beam STOPPER was marked but still functional* 

### [CEA-ESS-DIA-NC-0023.pdf]

![](_page_29_Picture_8.jpeg)

Cold Linac NPM Status - diagnostics forum at Lund

stopper

![](_page_30_Picture_0.jpeg)

# Repairing at CEA Saclay

![](_page_30_Picture_2.jpeg)

### EMU back to Saclay on November 23<sup>rd</sup> 2017

- Replacing the bellow, the outer shield, the connectors with ceramics. Removing water pipes with great care for the O-ring joints, connections...
- CEA Saclay exchanges the damage slits by its own subsystem Several tests were done fulfilling the requirements as vacuum and water leaks
- → Finally, EMU n°2 was sent to Lund on mid-October 2018.

ESS should refund the slit subsystem

![](_page_30_Picture_8.jpeg)

![](_page_30_Picture_9.jpeg)

![](_page_31_Picture_0.jpeg)

![](_page_31_Picture_1.jpeg)

### Thank you for your attention

Cold Linac NPM Status - diagnostics forum at Lund