

EUROPEAN SPALLATION SOURCE

BPM Electronics

Meeting BI forum

Rafael Baron Lund - Sweden 2018 - Nov

BPM system

BPM System specifications

• Specifications

Parameter	Value	Comments
Beam phase accuracy for nominal beam	+/- 1 °	
Beam phase precision for nominal beam	0.2 °	1 MHz bandwidth
Beam phase accuracy for 6.3 mA beam and 5 us pulse	. / 0 0	
Beam phase precision for 6.3 mA beam and 5 us pulse	+/- 2 °	1 MHz bandwidth
length	2 °	
Beam phase accuracy stability over 8 hours for nominal		
beam	+/- 1°	
Beam position accuracy for nominal beam	+/- 200 um	
Beam position precision for nominal beam	20 um	1 MHz bandwidth
Beam position accuracy for 6.3 mA beam with pulse		
length of 5 us	+/- 400 um	
Beam position precision for 6.3 mA beam with pulse		1 MHz bandwidth
length of 5 us	200 um	
Beam position accuracy stability over 8 hours	1 mm	
Beam position dependence for 15 mm off-centered beam	+/- 200 um	
Beam position accuracy for 6.3 mA, 5 us pulse and de- bunched beam.	+/- 10 mm	
Beam position precision for 6.3 mA, 5 us pulse and de-		
bunched beam.	1 mm	
Phase and Position bandwidth	1 MHz	
Readout latency	2 us	
Current measurement resolution	0.5 mA	
Beam position interlock for horizontal and vertical		Configurable circular
	-	unesnoid

BPM Electronics

- FPGA-based radio receiver:

- MicroTCA.4 based electronics.
- RF Front-End unit for analog and RF processing (filtering, amplification, calibration).
- Analog down-conversion for better phase resolution.
- FPGA based for fast signal acquisition from high speed ADCs.

BPM Electronics

EUROPEAN SPALLATION SOURCE

- Struck AMC and RTM
- In-house RF Front-End electronics
- External LO and CLK generation unit
- Custom FPGA firmware sharing as much as possible with LLRF as a design and long-term strategy.

RFFE unit for calibration, filtering and gain

DWC8300-LF (352 MHz) DWC8300 (704 MHz) SIS8300-KU

BPM electronics RF Front-End

EUROPEAN SPALLATION SOURCE

- BPM RF Front-End unit:
 - Signal filtering
 - RF amplification for dynamic range
 - Long term drifts calibration

New version will be send for production:

Integrated LO and CLK (PLL-based)

BPM firmware

BPM Electronics performance

EUROPEAN SPALLATION SOURCE

3 MeV, 0.4 mA to 50 mA, proton beam, 352.2 MHz RF

EUROPEAN SPALLATION SOURCE

3 MeV, 0.4 mA to 50 mA, proton beam, 352.2 MHz RF

Test/task 🔹	Test description	Priority 💌	Check 🔽
	Investigate possible errors introduced on the measurement due to high		
High frequency response to short beam	frequency components of the beam signal.	Day1	ok
Phase and position resolution	Phase and position resolution as function of the beam current.	Day1	ok
	Test the feature for low current and real beam. Test for ESS commissioning		
BPM self trigger for low current beam	beam. Find the correct values.	Day1	ok
Set the correct BPM sensitivity factor for position			
measurements.	Check the correct values from Seadat simulations	Day1	ok
	Change beam current and measure the position and phase dependence		
Beam current dependence	introduced by the measurement system.	Day2	ok
Beam energy dependence	Verify how the BPM system responds as function of the energy.	Day2	not possible
	After checking the signal amplitude at 352 and 704 MHz harmonics, check		
Measurements at different frequencies	the response to both harmonics.	Day3	ok
Measurements at 352 MHz	Repeat measurements for the 352 MHz harmonics.	Day3	ok
	Short, 50 Ohms and open configuration. Measure position and phase		
	resolution. Analyze the raw data spectrum and the oscilloscope time		
Check the response to different matching schemes	domain measurements to the three different schemes.	Day4	not possible
Long term measurements	Acquire several measurements	Day5	ok
Current sweep for short pulse	150 us pulse length and current from 3 mA to max	Day 2	ok
Beam energy measurements	Time of Flight measurements	Day 3	ok
	Compare the bunch length at 352 and 704 MHz by measuring the 2nd and		
Bunch length measurements	3rd harmonics	Day 5	ok
	Steering experiment by changing the vertical beam position and comparing		
Correlate NMP and BPM measurements	BPM data to NPM data.	Day 4	ok

- CEA Saclay BPM electronics can measure 4 points per pulse (low sampling rate).
- Pulse-to-pulse beam position variations in the order of mm.
- Not possible to measure intra pulse for diagnostics and beam improvement.

EUROPEAN SPALLATION

SOURCE

- Complete BPM rack with MicroTCA.4 electronics
- Standalone unit
- Self-trigger
- Cables + RFFE + MicroTCA.4
- Local IOC

EUROPEAN SPALLATION SOURCE

After 2 days of debugging and increasing the amount of H+ gas at the source:

BPM electronics beam tests

EUROPEAN SPALLATION SOURCE

• Bunch length measurements

500 us pulse, 0.4 mA. Iris on the limit.

BPM electronics beam tests

\rightarrow Beam steering tests:

- \rightarrow Vertical dipole to move the beam.
- \rightarrow Phase monitoring using 2 BPM (TOF measurements)
- \rightarrow Monitoring beam energy stability (TOF)

EUROPEAN SPALLATION

SOURCE

BPM System

- Thanks!
- Questions?

Backup slides

Backup slides

Backup slides

EUROPEAN SPALLATION SOURCE

Backup slides

10⁴

EUROPEAN SPALLATION SOURCE

Backup slides

Right

Up

Left

Down

Sum1

Right

Up

- Left

Down Sum2

REF

Right

Up

Left

Down BPM1

150 200 250 300 350 400 450 500

Time (µs)

100

50

20 40 60 80 100 120 140 160 180

100

150

Time (µs)

Time (µs)

200

250

XPOS1

YPOS1

24

BPM Electronics

