

EUROPEAN SPALLATION SOURCE

## Faraday Cups and Insertable Beam Stops

Elena Donegani ESS / AD / BPOD / Beam Diagnostics

www.europeanspallationsource.se

Beam instrumentation forum #5 Lund, November 21<sup>th</sup> 2018

#### Outline



|                             | Location | Status           | Proton energy<br>(MeV) | Shielding |    |
|-----------------------------|----------|------------------|------------------------|-----------|----|
| FARADAY<br>CUPS             | LEBT     | Installed        | 0.075                  |           |    |
|                             | MEBT     | Tested with beam | 3.6                    |           | -  |
|                             | DTL2     | Design<br>phase  | 21 - 39                | X         |    |
|                             | DTL4     |                  | 39 - 74                | X         | NC |
| INSERTABLE<br>BEAM<br>STOPS | LEDP     | Design<br>phase  | 74 - 90                | X         | SC |
|                             | MBL      |                  | 90 - 360               | X         |    |

#### **LEBT Faraday Cup**



EUROPEAN SPALLATION SOURCE

- Installed and verified w/o beam [GIN-895]
- TBD: Verification with beam in LCR

19-Sep-2018 3:36 p.m.



#### **LEBT Faraday Cup**



- .opi converted to Display Builder [CSSOPI-51]  $\rightarrow$  CSS-OPI in jira - Contact: ICS/Claudio Rosati
- Version 2.0: unified IOC for FC and BCM (Jan-19?)
- $\rightarrow$  Need for coordination between BPOD & ICS

| Faraday Cup : Top 23 |                                      |  |  |  |  |
|----------------------|--------------------------------------|--|--|--|--|
| Farada               | y Cups                               |  |  |  |  |
| Faraday Cup - LEBT   |                                      |  |  |  |  |
| Location:            | LEBT-020                             |  |  |  |  |
| Instance:            | PBI-FC-001                           |  |  |  |  |
| BD System:           | LEBT-020:PBI-FC-001                  |  |  |  |  |
| Screens:             | Acquisition Timing Ethercat Operator |  |  |  |  |
| Faraday Cup - LAB    |                                      |  |  |  |  |
| Location:            | LAB-010                              |  |  |  |  |
| Instance:            | PBI-FC-001                           |  |  |  |  |
| BD System:           | LAB-010:PBI-FC-001                   |  |  |  |  |
| Screens:             | Acquisition Timing Ethercat Operator |  |  |  |  |



#### FC system overview

- LEBT FC's electronics for all the FC systems
- At the back of RTM: surge arrester + protection diodes to avoid \*burning digitizer\*
- Rely on BCM firmware for differential measurements
- Low latency link DTL FC  $\leftarrow \rightarrow$  BCM upstream (\*beam loss\*)



#### Component ID for all FC systems

| AMC Struck SIS8300 KU     |                        |  |  |  |
|---------------------------|------------------------|--|--|--|
| RTM Str                   | uck SIS8900 DC coupled |  |  |  |
| Timing r                  | eceiver                |  |  |  |
| <mark>Chassis</mark>      |                        |  |  |  |
| MicroTC                   | A Carrier Hub          |  |  |  |
| MicroTC<br>Ethercal       | A Power Supply         |  |  |  |
| Ethercat                  | t modules              |  |  |  |
| <mark>Rack pa</mark>      | tch panel              |  |  |  |
| Rack                      |                        |  |  |  |
| Sensor                    |                        |  |  |  |
| High voltage power supply |                        |  |  |  |
| Beam lir                  | ne patch panel         |  |  |  |



1

#### LEBT FC: proposed brake

Feedback from MPS: a 'brake' requiring:

- a longer actuator
- a valve change



DSBC-40-160-C-PPVA

A1

EUROPEAN SPALLATION

SOURCE

### DTL2 and DTL4 Faraday Cups



EUROPEAN SPALLATION SOURCE



Image & plots: T. GRANDSAERT



- Graphite core (C) + copper jacket
- Entrance foil (E): graphite and TZM, respectively
- Activation and thermo-mechanical calculations
- Case (65 mA, 50 μs at 1 Hz) to be compared with Graphite Evaporation @ 2400° C
  - Tensile strength: graphite ~76 Mpa, Mo: 325 Mpa
- It can't withstand 4% duty cycle (2.857 ms @ 14 Hz)

#### **DTL FCs: intertank**

EUROPEAN SPALLATION SOURCE

- DTL by in-kind collaborators in Legnaro
- Inner aperture:

Originally (110 mm x **36** mm) Proposed (110 mm x **45** mm) in June Approved (**113** mm x **45** mm) on Nov-20





#### DTL FCs: shielding



EUROPEAN SPALLATION SOURCE



Images: (L) W. Hees, (R) ESS-0136227

#### - To avoid beam losses in the cold cavities during tuning and commissioning

- Energy deposition, fluxes and energy spectra, dose, dose eq., activation, dpa
- Cooling vs. Water activation











- To avoid beam losses in the cold cavities during tuning and commissioning
- Energy deposition, fluxes and energy spectra, dose, dose eq., activation, dpa
- Cooling vs. Water activation



### IBS: simplify & shield





- Simplify geo & materials for LWU & cryomodules in MCNPX simulations
- Shielding (lead or steel)
- Impact on Ni-cavities







#### Conclusion & Outlook



| System                      | Location | Next steps                                                            |  |
|-----------------------------|----------|-----------------------------------------------------------------------|--|
| FARADAY<br>CUPS             | LEBT     | Verification with beam (FC & BCM) [NCLIN-324]                         |  |
|                             | MEBT     | Coming soon                                                           |  |
|                             | DTL2     | CDR on 12-Dec-2018                                                    |  |
|                             | DTL4     | CDR on 12-Dec-2018                                                    |  |
| INSERTABLE<br>BEAM<br>STOPS | Spk      | Continue ANSYS calculations<br>And MCNPX for activation and shielding |  |
|                             | MBT      | Continue to define with MCNPX geo and materials                       |  |



EUROPEAN SPALLATION SOURCE

# Thank you!

## Questions?

WHAT'S IS IT A FORUM? A TWO-UM PLUS A TWO-UM?

> Beam instrumentation forum #5 Lund, November 21<sup>th</sup> 2018

#### References



EUROPEAN SPALLATION SOURCE

ESS-026670 Overall protection architecture for IDs ESS-0043439 Faraday cup design specifications for the ESS DTL ESS-0036676 Faraday cup design specifications for the ESS MEBT ESS-0012894, 0012895, 0012896, 0012897 ESS Vacuum Handbook Part 1-4 ESS-0038258 Description of Modes for ESS accelerator operation ESS-0008351 ESS hands on maintenance for ESS accelerator ESS-0037290 Motion control components standard for ESS applications ESS-0042973 Beam Stop Technical Specification PD\_Spoke\_ESS\_NT\_cryovalves\_20140214\_v1.docx The ESS design – R. Garoby et al. 2018 Phys. Scr. 93 014001 DAGMC – Direct Accelerated Geometry Monte Carlo: https://svalinn.github.io/DAGMC/

Motion control information for Beam Instrumentation Systems: https://confluence.esss.lu.se/display/BIG/Motion+Control https://confluence.esss.lu.se/display/BIG/Motion+control+hardware+list

CS-studio user's manual & training videos: https://confluence.esss.lu.se/display/SW/CS-Studio+User%27s+Manual https://confluence.esss.lu.se/display/SW/CS-Studio+Training+Videos