

ESS medium-beta cavities

R. Paparella INFN Milano – Lab. LASA

Outlook

- INFN contribution to ESS
- Production strategy
- Cavity parameters
- From design to prototype and then to series production
- Transports
- Production status, statistics and measurements

INFN-LASA contribution to ESS linac

INFN LASA In-Kind contribution for 11.6 M€

- Design of the Medium β cavity family
- 36 cavities in the industry, including treatments, tuning and He tank following a
- Built to Print strategy.
- Cavities delivered ready for the cold test.
 - Analogous strategy as for the XFEL successful experience
- Cold test in a qualified infrastructure (DESY).
- Delivery at CEA ready for the cryomodule assembly.
- Series cavities production at the industry:
 - **Prototypes** cavities for design verification, treatment optimization, know how transfer to the industry.
- Series cavities production at the industry:
 - Expected delivery rate: 2 cav/3 weeks

11 10		
	Max Energy	2 GeV
	Average beam power	5 MW
	Peak beam power	125 MW
	Peak beam current	62.5 mA
	Pulse length	2.86 ms
	Repetition rate	14 Hz
	Energy from SC sections	96 %

26/9/2019

Major procurements

- **Niobium** procurement for the fabrication of 38 medium beta cavities.
- Cavity fabrication of 36 medium beta cavities (+ 2 spares) in the industry
 - Including treatments, tuning, Helium tank integration, etc.,
 - Accomplishing the ESS requirements in terms of performances and functional interfaces.
 - Documentation, QA/QC
- Ancillaries
 - Vacuum valves
 - Antennas, Feed-throughs
- Cold test at DESY.
- Transportation in special boxes and delivery at the cryomodule assembling facility.

Strategy

ESS cavities production strategy similar to XFEL

- One company: 36 cavities.
- Company already "experienced" by previous activities as E-XFEL.
 - Prototypes completely produced by the company, both for mechanical construction and treatments.
 - **INFN experts** for QA/QC set up, reviewing of operative instructions, vacuum, RF measurements, chemical treatments etc.
- Niobium vendor selected by public tender in 2017 (2.6 M€): NINGXIA OTIC
- Cavity vendor selected by public tender in 2017 (3.7 M€):
 Ettore Zanon

EUROPEAN SPALLATION SOURCE

Quality control

- Documental SW developed within brightness
- \approx 100 documents per cavity
- Total of > 4000 documents to be:
 - Exchanged among EZ, INFN, ESS and CEA ٠
 - Managed and stored with INFN ALFRESCO DMS •
 - Analyzed for statistics, deviations, guidance and • feedback for production

Campus, China **Medium-beta cavities for the ESS** 9, September 2019, IMPCAS SLHipp

INFN cavity parameters

	Requirements: Design p	hilosophy:	R
s campus, cuma	 Boundaries fully La compatible to ESS concentration requirement. Aconstant 	rger cell-to-cell oupling factor, k>1.5% ccept light odest sacrifice on E _{pea} od R/Q	R G F1 A A C
2	Mechanical Parameters	INFN design	π-
	Cavity wall thickness (mm)	4.2	
й та '	Stiffening ring radius (mm)	70	G
	Internal volume (l)	69	U M
	Cavity internal surface (m ²)	1.8	E
ap re	Stiffness (kN/mm)	1.7	E,
2,04	Tuning sensitivity K _T (kHz/mm)	205	E,
	Vacuum sensitivity K_V - $k_{ext} \sim 21 \text{ kN/mm} (\text{Hz/mbar})$ -	-8	B ₁ Q
0	LFD coefficient K_L - $k_{ext} \sim 21 \text{ kN/mm} (\text{Hz/(MV/m)}^2)$ -	-1.8	Q

RF Parameters	INFN design	ESS spec.
R _{iris} (mm)	50	≥47
Geometrical beta	0.67	0.67
Frequency (MHz)	704.42	704.42
Acc. length (m)	0.855	0.855
Cell to cell coupling k	1.55% / (+26	
	%)	
π -5 π /6 mode sep. (MHz)	0.70 / (+30%)	>0.45
$G(\Omega)$	198.8	
Optimum beta, β_{opt}	0.705	0.705
Max R/Q at $\beta_{ont}(\Omega)$	374 \> (-6%)	
E_{acc} at β_{opt} (MV/m)	16.7	16.7
E_{peak}/E_{acc}	2.55 🗡 (+7%)	
$E_{peak}^{'}$ (MV/m)	42.6	< 45
$B_{peak}/E_{acc}(mT/MV/m)$	4.95 / (+3%)	
$\dot{Q_0}$ at nominal gradient	$>5 \times 10^{9}$	$>5 \times 10^{9}$
Q _{ext}	7.8×10^{5}	$5.9 \sim 8 \times 10^{5}$

26/9/2019

From the design to prototype

INFN R&D on ESS prototypes MB001:

- INFN design, plug compatible with ESS cryomodule.
- Know how transfer to the industry
- Built prototypes at industry with same procedures as for series.
- Final handling and test done in the qualified infrastructure at LASA.
- Successful result well over specification

Dumb-Bells

26/9/2019

Series cavity fabrication

EUROPEAN SPALLATIO

ES

the

for

cavities

Medium-beta

ess

Surface treatments

- Bulk & final BCP: 1:1:2, (HF HNO3 H3PO4)
- Bulk BCP: about **200** μ m, subdivided in two steps.
 - Cavity is turned upside down after the first step.
 - Cavity weight monitoring for each treatment
 - For each BCP treatment, barrel and output acid temperature are acquired, together with acid throughput
 - 6 thermocouple sensors (t1,...,t6) are placed on cavity surface, continuously acquiring temperature during chemical etching
 - Option for IR camera with standard emissivity dots monitoring during BCP
 - A Nb sample is placed inside cavity (through MC) for monitor etching rate and RRR variation
 - Cavity thickness measurement with ultrasound gauge before and after etching
- Heat treatment in vacuum, at 600 °C, 12 h. Temperature, pressure, RGA recorded. Nb sample treated together with each cavity.
- Final BCP: **20** μ**m**
- Proper rinsing and HPR treatment done between each steps

Transports

- 39 cavities transported so far, different configurations:
 - 4 prototype boxes (blue ones), 20 series boxes (black ones)
 - Naked cavity (with frame) w or w/o foam cushions
 - Dressed cavity w or w/o frame, w or w/o foam cushions ٠
- EZ-DESY route: EZ responsibility, done using always the same company used for E-XFEL
- DESY-CEA route on few different dealers from Germany (dedicated transport, point to point, no intermediate storage during transportation). Dealer choice not possible.
- Hopefully, cavity configuration for transport should be now assessed

DESC DESC	Italy , 7 Hamburg lany JPEAN LATION KE	Document No. M002_AI4_Y_OUT02 Cavity ID M002

cavity

Incoming Inspection of the fully equipped cavity

RF Transportation Acceptance Criteria

Max p mode frequency difference	± 0.1 MHz
Max p mode RF power transmission	-100 dB
Min p mode RF power transmission	-135 dB
Max Mean Spectrum Frequency Deviation	10 kHz
Peak acceleration (baseline subtracted)	< 3 g

Box tests

Series boxes tested on a vibrating platform

- Cavity mockup from CEA
- 2 h duration equivalent to 1600 km road transport
- Spectral analysis before and after, single impulse test up to 6 g
- **Results OK:**
 - Modal frequency lowered to 7 Hz (10-15 Hz for E-XFEL) ٠
 - 6-8 shock damping factor (2-3 for E-XFEL) ٠

Photo 1: Vibration test mounting techniques

Identical before/after spectra •

26/9/2019

Recorded shock analysis

- 30 out of 39 transports analyzed so far, plus:
 - 2 with old SL
 - 2 SL data missing
- No transport-related issues so far
- On average:
 - Av. Z peak 1.6 ± 0.7 g
 - Av. X,Y peak 1.0 ± 0.5 g
- SENSR SL setup for E-XFEL was auto-unbiasing:
 - By subtracting 1 g to vector magnitude
 - With AC coupling: low frequency shocks lowered by 1 g!

Peak Shocks - Z axis

Proto Boxeso Boxeries Boxes Boxes Boxes DESY

China Medium-beta cavities for the ESS SLHiPP 9, September 2019, IMPCAS Campus,

Niobium scanning summary

- Series sheets
 - All 456 sheets have been scanned.
 - 83.4 % accepted after first scan
 - Only 1 sheet rejected due to thickness below specs
 - Sheets with geometrical defects are all recoverable
- Spare sheets
 - All 24 sheets have been scanned.
 - 70.8 % accepted after first scan
 - All sheets accepted

Components production status

EUROPEAN Spallation Source

Component	Produced	Expected	Percentage
Inner Half Cell	304	304	100
Penultimate Half Cell	76	76	100
End Half Cell	76	76	100
Inner Dumbbells	114	114	100
Terminal Dumbbells	76	76	100
End Groups	76	76	100
Cavities	32	38	84

Series cavity status

Level	Cavity status	Needed documents	If Level reached
Al1	Cavity after mechanical fabrication	Mechanical, RF, vacuum, visual documents	Proceed to Level Two
Al2	Cavity before He-tank integration	Mechanical, RF, vacuum, Treatment documents (bulk BCP, annealing)	Proceed to Level Three
AI3	He-tank integration, Final BCP and surface treatments, assembly of accessories for the cold RF test	He-tank integration and pressure tests (mechanical, RF, vacuum, visual documents, transfer measurements), last surface treatments, final vacuum and RF checks, outgoing inspection	Integrated cavity ready to be cold RF tested
Al4	Cavity cold RF tested	Documents of the cold RF test, incoming/outgoing checks	Cavity can be sent to CEA for string assembly
AI5	Cavity accepted for string assembly	Documents with incoming inspection at CEA	Cavity final approval

Cavity	Al1	Al2	A13	Al4	A15
M001					At CEA/CM1
M002					At CEA/CM1
M003					At CEA/CM1
M004					At CEA/CM2
M005					At CEA/CM1
M006					
M007					
M008					At CEA/CM2
M009					At CEA/CM2
M010					At CEA/CM2
M011					
M012					
M013					
M014					
M015					
M016					
M017					
M018					
M019					
M020					
M021					
M022					
M023					
M024					
M025					
M026					
M027					
M028					
M029					
M030					
M031					
M032					
M033					
M034					
M035					
M036					
M037					
M038					

China

Production statistics

Medium-beta cavities for the ESS Campus, SLHiPP 9, September 2019, IMPCAS

EUROPEAN SPALLATION SOURCE

ess

Qualification of dressed cavities at DESY AMTF

Q vs E_{acc} curve acquired at 2 K temperature only

External radiation measurement by Proportional Counter and Nal scintillator

- $Q_0 \ge 5 \cdot 10^9 @ 16.7 \text{ MV/m}$
- Q_{PU} ~ 2 10¹¹
- HOM at least 5 MHz away from 5th ML

X Ray M003

3.0E-01

2.5E-01

2.0E-01

1.5E-01

1.0E-01

5.0E-02

1.0E-05

X-Ray [mGray/min]

ESS insert at AMTF

Eacc [MV/m]

Additional VTs of undressed cavities

Cavity	lssue	VT	Current Status
M004	Grinding – not fully penetrated EBW	DESY	ОК
M006	Grinding - pitting	LASA	Quarantined
M010	Pitting w/o grinding	DESY	ОК
M013	HT in refurbished oven	LASA	ОК
M012	Pitting w/o grinding	LASA	Pending

LASA facility used for cavities that required dedicated VT with lower T or diagnostics:

- X ray spectroscopy
- Photodiode for cryo X-ray detection •
- Second sound •
- Fast thermometry •

ESS MB Cavity Vertical Test QvsE at T=2K

21

ÍNFŇ

China

Campus,

Eacc [MV/m]

Example of additional measurements

China **Medium-beta cavities for the ESS** SLHiPP 9, September 2019, IMPCAS Campus,

> SPALLATIO SOURCE

ess

Further efforts

- Analysis of cavity diagnostics
 - Quench spot detection with second-sound trilateration and fast thermometry
 - Radiation dose and spectrum: end-point, continuous registration
- Defect detection and analyses
 - Pitting (spherical / round shape) on the equator area (HAZ boundary) typically found during optical inspection after the bulk BCP (≈200 µm) on a few cavities.
 - No defect or any kind of foreign structure visible before the bulk BCP during the optical inspection
 - Replica, 3D microscopy, SEM analysis of local defect
- EZ oven requalification
 - RRR measurement as well as GDOES and SEM analyses on samples

SPALLATIO