Kilowatt Level High Efficiency Solid State Power Amplifier at 100 MHz

Renbin Tong, Dragos Dancila
Uppsala University

SLHiPP 9 Workshop
Lanzhou, China

27 Sep. 2019
Outline

• Project background
• Simple theory - introduction
• Circuit simulation analysis
• Realized circuit
• Measurements & results
• Conclusion
Background: Cyclotron

- Eurostar ENEFRF project: 10 kW high efficient RF power sources for cyclotron particle accelerator at 27 and 101 MHz.
- The highest output power for LDMOS technology is about 1.8 kW.
- Combine 10-12 power amplifier modules at half the nominal power.
- Each module output 1 kW, eff>80%.
Amplifier classes of operation

Class A

Class B

\[R_{opt} = \frac{V_{dd} - V_{knee}}{I_{max}} \]
Simple theory: ‘Continues’ Class Mode

- novelty: planar structure, kW level.
- Leave enough design space.
- Decrease knee effect on efficiency impaction.

\[Z_{opt} = (1 - j \gamma) R_{opt} \]

\[Z_{opt_2h} = (0 - j a \gamma) R_{opt} \]

- The key design point is to realize reactive second harmonic impedance.
Push-pull and single ended architectures

Push-pull

Single Ended (resonant output network)
Simple output linear model

- Parasitic output capacitor of transistor: ~200 pF
- Jumping wire inductor: ~0.2 nH
- Capacitor of package: ~4 pF
Simple output linear model

Connected directly for Single-ended application
Final layout with EM Simulation

Finalized layout with mesh
Harmonic Simulation

Waveform at transistor’s I-gen plane

Load-line Curve
Work Prototype for Measurement

Renbin Tong - Kilowatt Level High Efficiency Solid State Power Amplifier at 100 MHz
Frequency Sweep

Vdd = 45V, Idq= 200mA

<table>
<thead>
<tr>
<th>Freq_MHz</th>
<th>Pin_dBm</th>
<th>Pout_dBm</th>
<th>Pout_W</th>
<th>Gain_dB</th>
<th>Eff</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>38.444</td>
<td>58.569</td>
<td>719.32</td>
<td>20.125</td>
<td>80.187</td>
</tr>
<tr>
<td>99</td>
<td>37.94</td>
<td>59.489</td>
<td>889.1</td>
<td>21.549</td>
<td>88.656</td>
</tr>
<tr>
<td>98.5</td>
<td>37.947</td>
<td>59.894</td>
<td>975.99</td>
<td>21.947</td>
<td>93.137</td>
</tr>
<tr>
<td>98</td>
<td>37.816</td>
<td>60.096</td>
<td>1022.4</td>
<td>22.28</td>
<td>92.606</td>
</tr>
<tr>
<td>97.5</td>
<td>37.703</td>
<td>60.187</td>
<td>1044.1</td>
<td>22.484</td>
<td>89.689</td>
</tr>
<tr>
<td>97</td>
<td>37.602</td>
<td>60.236</td>
<td>1055.8</td>
<td>22.634</td>
<td>85.556</td>
</tr>
</tbody>
</table>

Signal:
- **Pulse Periods**: 3.5 ms
- **Pulse Width**: 70 ms
Measured Results

BLF188@98.5MHz, 45V

- **Gain (dB)**
- **Eff (%)**

Pout, OUTPUT POWER (Watts)

Eff = 92% @ Pout = 980Watts

BLF188@98MHz, 45V

- **Gain (dB)**
- **Eff (%)**

Pout, OUTPUT POWER (Watts)

Eff = 93% @ Pout = 1020Watts
Frequency Sweep

Vdd = 50V, Idq= 500mA

<table>
<thead>
<tr>
<th>Freq_MHz</th>
<th>Pin_dBm</th>
<th>Pout_dBm</th>
<th>Pout_W</th>
<th>Gain_dB</th>
<th>Eff</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>38.096</td>
<td>60.061</td>
<td>1014.2</td>
<td>21.965</td>
<td>81.016</td>
</tr>
<tr>
<td>98</td>
<td>37.705</td>
<td>60.819</td>
<td>1207.4</td>
<td>23.114</td>
<td>86.546</td>
</tr>
<tr>
<td>97</td>
<td>37.602</td>
<td>61.116</td>
<td>1292.9</td>
<td>23.514</td>
<td>83.038</td>
</tr>
</tbody>
</table>

Increase ~200 Watts while sacrifice 6% efficiency
Conclusion

• We tried the new ‘continues’ mode on high power/high efficiency amplifier application.

• Achieved 1000 Watts with 92% in a single-ended prototype.