The beam monitors common project at ESS

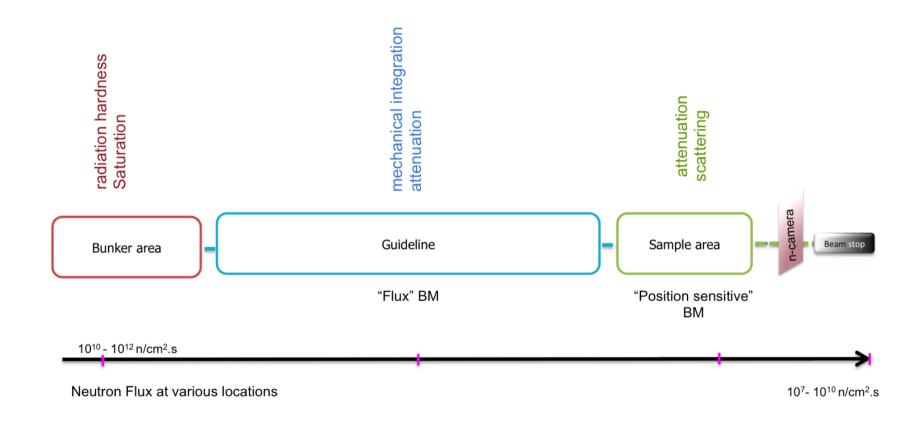
Kalliopi Kanaki

Steven Alcock, Ioannis Apostolidis, Vendula Maulerová Richard Hall-Wilton

IKON16, 12.02.19

Goal of the project

- Turn-key provision of beam monitoring solutions
 - For each instrument
 - From design to provision, installation and cold commissioning
 - Operating up to 2 MW
 - Standardization
- 2 phases foreseen
 - Design phase: 2019
 - Provision phase: 2020-2025


Phase 1 (2019): design

- Preliminary Design Report PDR by September 2019 (initial project scope)
- Critical Design Report CDR by January 2020 (what will be built/procured)
- DG public confluence page for sharing results
 - <u>https://confluence.esss.lu.se/display/DG/Beam+monitors+common+project</u>
 - Contains list of BM needed by ESS instruments (~50)
 - Requirements as currently understood

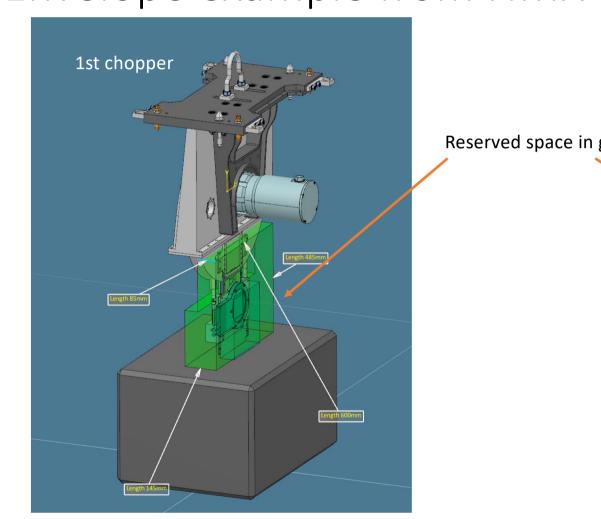
Phase 2: provision

- Starts in 2020 after completion of design phase
- Includes
 - Procurement
 - Site acceptance tests (SAT)
 - Installation
 - Cold commissioning
- High fraction of instrument participation is expected.

BM zones with different focus

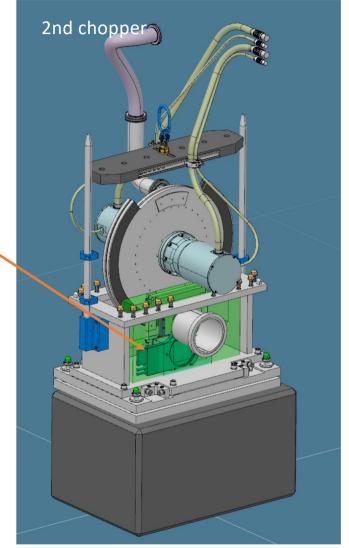
Requirements depend on location and function

Table 1: Summary of requirements for the monitors at various position.


Position	ESS requirement	Intensity measurement	Good time resolution [< 100 us]	PSD	Attenuation	Functionality @ 2 MW?	Moveable	Dual monitor	Discrimination	Stability (during typical experiment)
Near monolith	✓	\checkmark	\checkmark	×	< 2 % @ 10 Å	√	×	×	Discriminate fast neutrons + gamma	< 5 % variation during lifetime
Outside bunker	×	\checkmark	Optional	Optio nal	< 2 % @ 10 Å	Optional	Optional	Optional	Discriminate fast neutrons + gamma	< 5 % variation during lifetime
After chopper (system depende nt)	~	Chopper diagnostics: ≭ guide diagnostics: ✓	~	Optio nal	< 2 % @ 10 Å	~	Optional	Optional	Slow neutron and gamma distinction important	< 5 % variation during lifetime
At critical guide piece	×	✓	×	Optio nal	< 2 % @ 10 Å	Optional	Optional	Optional	Neutron/gamm a	Same as above
@ Sample	√	\checkmark	\checkmark	Optio nal	< 2 % @ 10 Å low scattering	\checkmark	Optional	Optional	Neutron/gamm a	0.1 – 0.5 % due to normalizatio n
Post- sample	×	\checkmark	\checkmark	Optio nal	< 2 % @ 10 Å low scattering	\checkmark	Optional	Optional	Neutron/gamm a	Optional

Preliminary BM choices

- Qualified per location (rate capability, saturation)
 - Bunker: fission chambers, ionization chambers, GEM
 - Guide/choppers: γ monitor, V monitor, external efforts (B-GEM, N-GEM, ESS Bilbao)
 - Sample: wire detectors
 - Transmission: wire detectors
- Qualification per function
 - Only flux?
 - Flux and time resolution?
 - Efficiency? Only for thermal neutrons?
- Input from instruments
 - McStas models (please upload to <u>nosg-baselines</u> repository)
 - Commissioning plan


Priorities of DG in the coming months

- Analyze requirements for bunker and guides/choppers (Kalliopi: 50% of time, already started)
 - Identify which detector choices need further development
 - Prepare in-beam tests at high flux environments (to be performed latest by end of year)
- Mechanical integration (Ioannis, up to 50% of time, already started)
 - Reserve envelopes in instrument CAD drawings
 - Determine utilities
 - Meetings with instrument engineers over IKON16
- Standard readout integration (Steven, 10-15% of time)
- Continue other monitor efforts (parasitic and quasi-parasitic)
 - Proof of concept for γ monitor in place (publication in progress, Fatima/Richard)
 - Upcoming in-beam tests at HZB (V17, V20) for Vanadium monitor (Vendula)
 - See also talks in 2nd part of BM session

Envelope example from NMX

Reserved space in green

Validation and qualification for use at ESS

- Detection efficiency
 - Response both at high and at low fluxes
- Beam attenuation including vacuum windows and realistic mechanical integration
- Time resolution
- Discrimination against fast n and $\boldsymbol{\gamma}$ background
- Stability
- Simplicity of integration with the ESS backend readout
- Maintenance plan