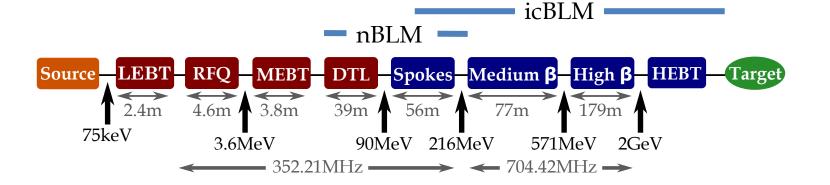


nBLM system overview

Irena Dolenc Kittelmann
ESS
(BLM System Lead)

Outline

- ESS BLM
 - Reminder
 - L4 requirements
- nBLM
 - Teams involved
 - Interfaces
 - Components overview
 - Project timeline
 - FW/SW development plan
 - Procurement plan
- nBLM CDR3
 - Charge


ESS BLM

Two BLM systems

- icBLM
 - Primary monitor in the high energy parts
 - Detector: ionization chambers (ICs)
- nBLM
 - Primary monitor in the low energy parts
 - Detector: micromegas detectors

	Num. of devices				
Linac section	icBLM		nBLM		
	comment	count	comment	count	
MEBT		/		2F+2S=4	
DTL	1/tank 5×1=		8/tank,2/end	$5 \times (4F+4S)+1F+1S=42$	
Σ		5		23F+23S=46	
Spoke	1/cryo,3/2q	13×4=52	1/2q, 1/cryo	13×(F+S)=26	
MB	1/cryo,3/2q	$21 \times 4 = 84$		1F+1S=2	
HB	1/cryo,3/2q	$9 \times 4 = 36$		1F+1S=2	
MEBT	3/2q	$16 \times 3 = 48$		/	
A2T					
ramp	1/bend,3/2q	$6\times3+2\times1=20$		1F+1S=2	
to target	3/2q, 3/4rast.	$3\times3+2\times3=15$		2F + 2S = 4	
dump	1/mag.	6		/	
Σ		261		18F+18S=36	
$\Sigma\Sigma$		266		41F+41S=82	
$\Sigma\Sigma\Sigma$			1	348	

#	Туре	Name	Description	
1	Beam loss	XXX beam loss measurement	The beam loss shall be measured in the XXX section.	Coverage
2	Beam loss	XXX beam loss measurement sensitivity	A beam current loss of 10 mW/m shall be detected.	Sensitivity, lower limit
3	General	XXX PBI damaging beam detection mitigation	Beam conditions that are potentially damaging to machine components shall be detected by the instrumentation and reported fast enough so that the conditions can be mitigated before damage occurs.	Upper limit, response time, MP thresholds System functioning for all beam modes
4	General	XXX PBI peak current range	Proton beam instrumentation in the XXX section shall function over a peak beam current range of 3 mA to 65 mA.	
5	General	XXX PBI pulse length range.	Proton beam instrumentation in the XXX section shall function over a proton beam pulse length range of 5 µs to 2.980 ms.	
6	General	XXX PBI pulse-by pulse measurement update rate	Unless specifically stated, all instrumentation shall be able to perform the measurements and report the relevant PV data at a repetition rate of 14 Hz.	

Table 1: L4 PBI requirements [2] relevant for the BLM system. The 'XXX' refers to specific linac section and runs over all section from including MEBT on.

nBLM: teams involved

CEA DEDIP (BD IK)

- Detector and FEE design & production
- Gas system and mechanical support design & fabrication/procurement
- Procurement of part of DAQ HW (digitizers, HV, LV, short cables)

CEA DIS (ICS IK)

Monitoring and control SW

LUT DMCS (ICS IK)

FPGA FW design and implementation

ESS BD

- System architecture, for example
 - Detector and electronics layout
 - Mechanical support integration
 - Gas lines 3d model
 - Development of specifications and requirements
 - Spec. relevant for detector design
 - Def. of FW and SW functionality
 - Def. of data processing (FPGA algos)
 - Definition of monitoring variables and algos
 - Beam loss simulations: MC simulation of lost protons
- Installation
- System commissioning
- Coordination & project management

ESS ICS

■ FW and SW support and integration

nBLM: teams involved

- T. Papaevangelou (local coordinator)
- L. Segui (detector)
- P. Legou (FEE, cabels, connectors)
- S. Aune (gas system)
- D. Desforge (mechanical support)
- C. Lahonde-Hmdoun (QA, verification plan)

CEA DIS (ICS IK)

- F. Gougnaud (local coordinator)
- Y. Mariette (EPICS)
- V. Nadot (EPICS)
- Q. Bertand (PLC, gas system)

LUT DMCS (ICS IK)

- W. Cichalewski (local coordinator)
- G. Jablonski (FW, SW)
- R. Kielbik (FW)
- W. Jalmuzna (FW)

ESS BD

- T. Shea (BD section leader, interim system BLM lead)
- I. Dolenc Kittelmann (BLM system lead)
- K. Rosengren (FW, DOD)
- H. Kocevar (SW)
- J. Norin (bookkeeping: det. & el. Layout, naming)
- S. Grishin (installation, gas system)
- C. Derrez (verification plan, QA)
- E. Bergman (cables, connectors, PPs)
- T. Grandsaert (mechanical integration)

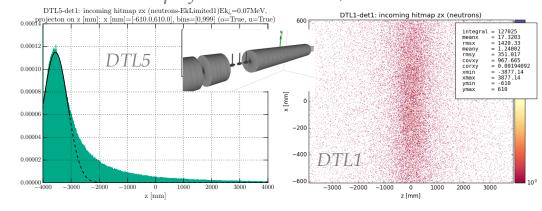
ESS ICS

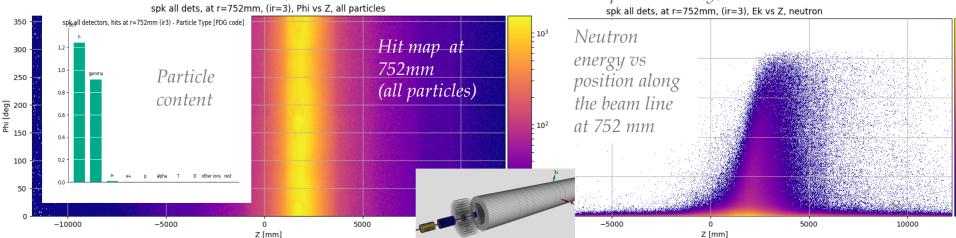
- F. dos Santos Alves
- (S. Farina)
- (W. Fabianowski)

nBLM interfaces

Interfaces

- Site Infrastructure
 - Lang haul cables
 - Gas system (long pipe connections)
 - Holes for mech. support (DTL rails, MEBT feet)
- Vacuum
 - Detector supports in LWUs
- Cryo
 - Detector mounting (Spoke cryo)
- With Machine Protection System (MPS)
 - FBIS (Fast Beam Interlock System)

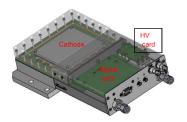



Detectors

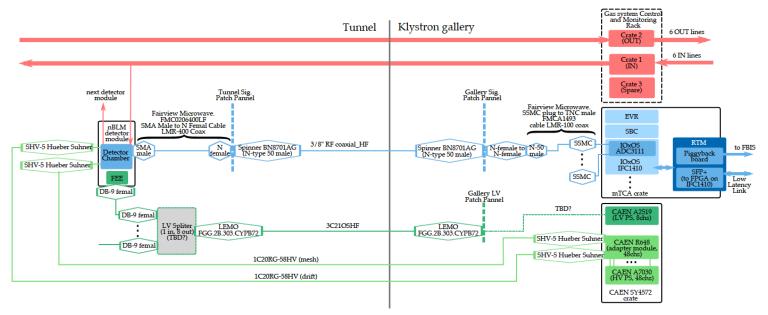
- Micromegas detectors (CEA), designed specifically for ESS; idea:
 - Sensitive to fast neutrons –
 suppression of thermal neutrons (no correlation with beam loss)
 - Insensitive to low energy photons (X- and γ-rays) – to suppress the RF induced photon background

Neutron hit maps for Pencil beam, at 1mrad in DTL

Pencil beam, 220MeV on 1st insertion in 1st Spoke cavity, at 1mrad


nBLM: components overview

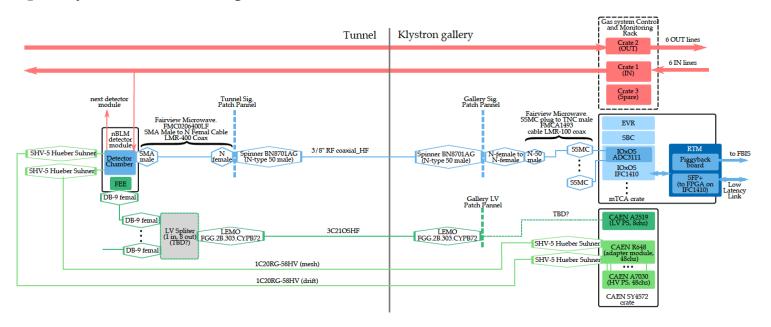
FEE:


- Custom made mezzanine card with FAMMAS preamps (CEA)
- Housed in a detector module together with the detector chamber and HV mezzanine card

BEE

- IOxOS IFC1410 (ESS standard platform)
- IOxOS ADC3111 FMC digitizer (250MS/s, DC coupled, 8 channels).

nBLM: components overview

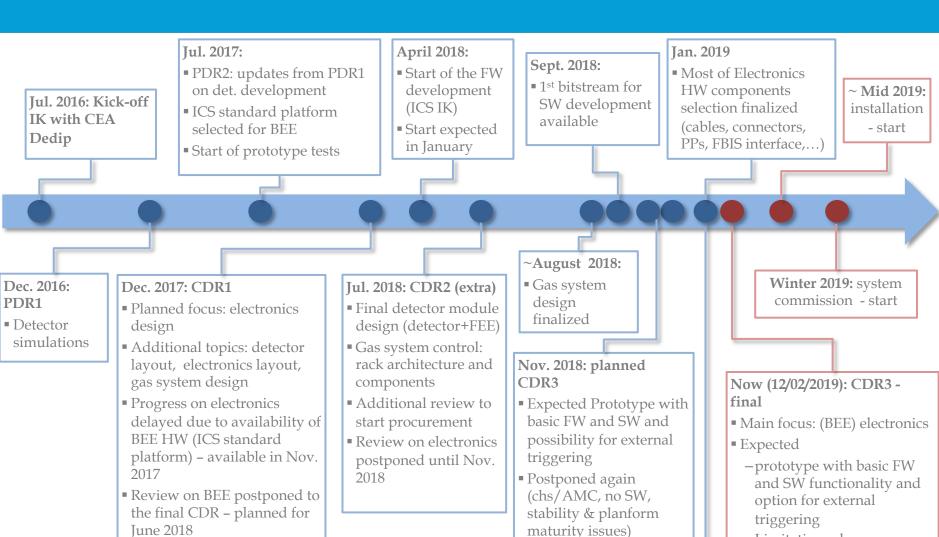


BEE

- FBIS interface
 - Piggyback board on RTM, part of ICS standard platform (both still under development)
 - Temporary solution for test purposes: IOxOS DIO3118 FMC
- Low Latency Link connection
 - SFP+ on RTM to IFC1410 FPGA
 - Temporary solution: existing RTM from IOxOS

BEE - alternative

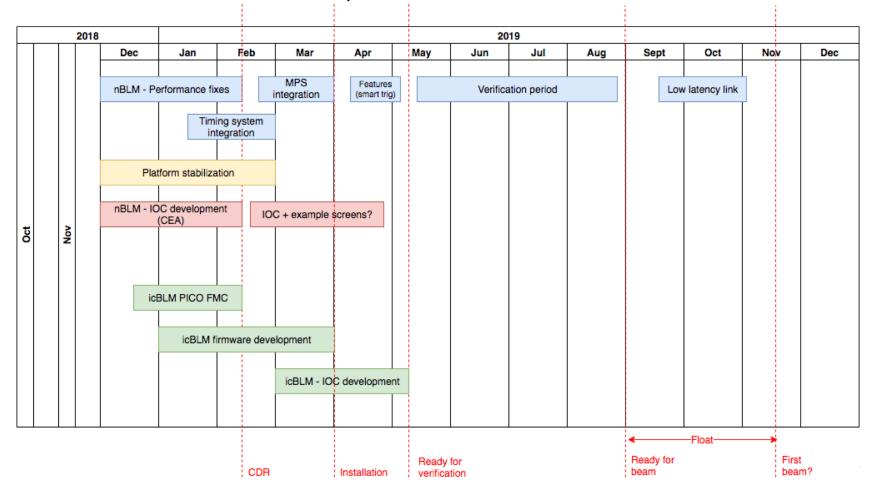
- Struck SIS8300-KU
- Digitiser: SIS8900 RTM
 - 125MS/s
 - +/-1V, 16 bit
 - DC coupled



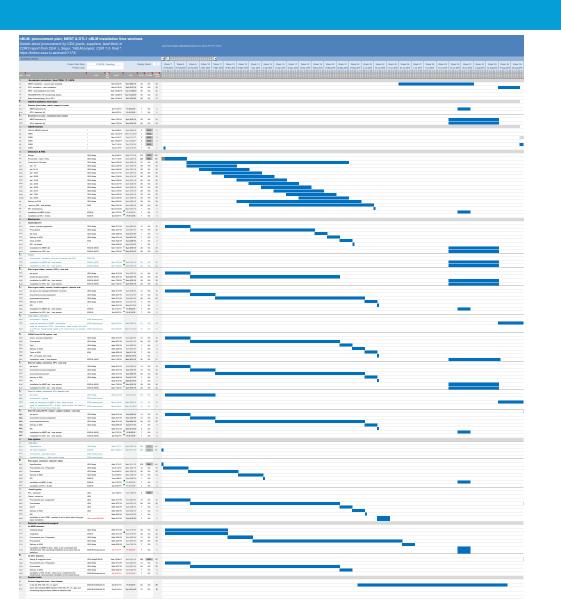
nBLM project: time line

-Limitations clear

-Stable platform


Start of development of SW part of DAQ

Dec. 2018


nBLM FW/SW development plan

K. Rosengren, FW/SW development plan (See .xlsx file under the nBLM CDR3 material)

See .xlsx file under the nBLM CDR3 material for detailed view (procurement plan, installation time windows for MEBT and DTL1 detectors, system tests, SW and FW development plan)

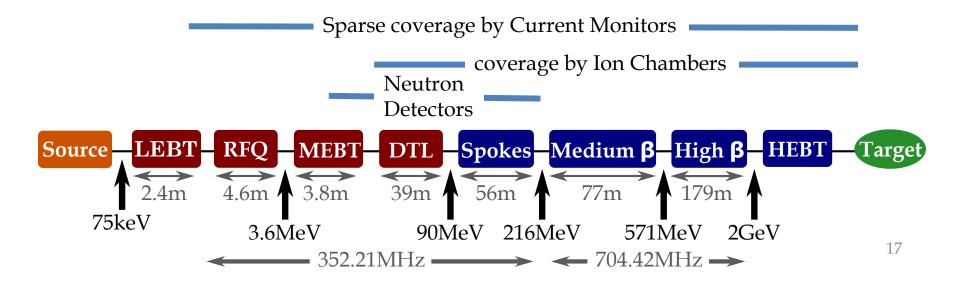
Procurement/production

- Detector production on time
- Other lead times: not longer then 12 weeks
- If all as planed, ready for installation in MEBT with minimum ~5 weeks contingency
- Potential risks for MEBT nBLMs:
 - Long gas pipes installation (Infrastructure) dates unknown
 - MEBT detector support integration lack of resources
 - Detector and support installation dates to be coordinated with Infrastructure
 - Some cabling details TBD (fx. pin layouts, LV distribution box design and integration, short signal cables) – only LV distribution box integration higher risk due to lack of resources
 - Installation in racks during summer resource problem?
 - Availability of crates (ICS) unclear (but consider as low risk)
 - Long and part of short cables available for installation (Infrastructure) – dates unclear (but consider as low risk)

nBLM CDR3

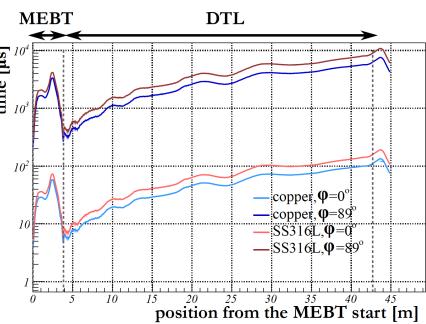
Supporting documentation available on top of the agenda since Monday, 5/2/2019: https://indico.esss.lu.se/event/1173/

- nBLM CDR3 charge:
 - nBLM overall system.
 - Main focus: electronics, in particular BEE.


Back up material

ESS Beam Loss diagnostic tools

(from T. Shea)


- Total beam loss, microsecond measurement latency required for protection
 - BCM, icBLM (saturation, nBLM (current mode) → Interlock; Threshold/derivative term for fast protection
- > 1.6 milliamp lost for up to 200 μs
 - BCM, icBLM, nBLM -> Interlock; Damage model for protection
- $\sim \mu C$ lost over 200 μs to many seconds (diffusion time)
 - icBLM, nBLM -> Interlock; Damage model for protection
- ~ "1 Watt/meter" radiation dose management
 - icBLM, nBLM -> alarm based on dose/activation plan

ESS BLM: Response time

- Required response time set in the past:
 - NC linac (MEBT-DTL): ~5 μs.
 - SC linac: \sim 10 μ s.
 - Numbers based on a simplified melting time calculations, where a block of material (copper or stainless steel) is hit by a beam of protons with a uniform profile under perpendicular incidence angle, no cooling considered [9].
- Numbers re-checked with a Gaussian beam and update beam parameters:
 MEBT DTL
 - NC linac: calculated melting time values of 3-4µs imply even stronger demands on the response time (confirmed with a MC simulation as well).
 - SC linac: the 10µs requirement for response time fits well with the results of this calculations.
 However: other damage mechanisms ma mandate even shorter response time SCL (discussed further).

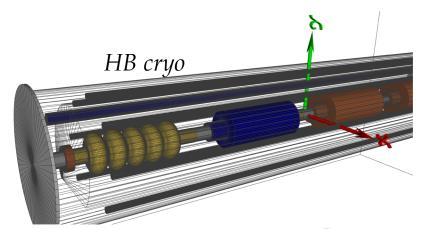
ESS BLM: beam loss simulations

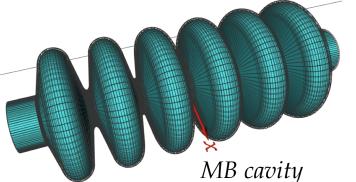
MC simulations for tracking of lost protons needed to determine

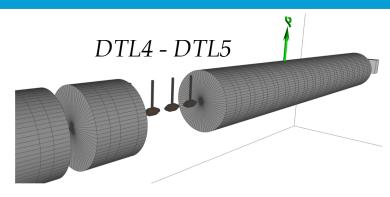
- Detector locations, system response time and dynamic range
- Expected particle fields, signals
- Initial MPS threshold settings at the startup and later adjustments
- Anticipated response of the system during fault studies to verify and calibrate the system response

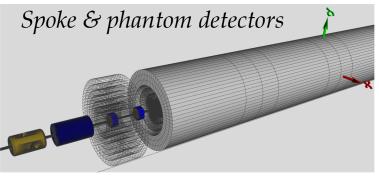
Required inputs

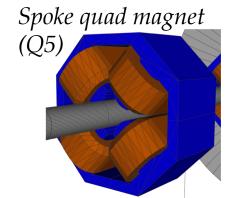
- Ideally
 - Expected loss maps during normal operation
 - A list of accidental beam loss scenarios with loss maps
 - Elements to be protected, damage levels
- Large number of possible accidental scenarios: simplifications/assumptions needed


Simulation tool


- Geant4 simulation framework developed by the ESS neutron detector group
- Geant4 based ESS linac geometry created (current version: DTL HEBT)

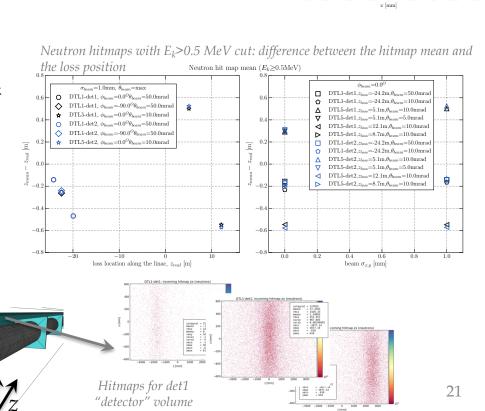

ESS BLM: MC simulations - linac geo





DTL5-det1: incoming hitmap zx (neutrons-EkLimited1) Ek $_b\!=\!0.07 \mathrm{MeV}$

Past studies

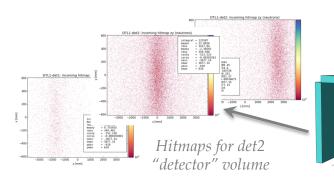

- Focused on DTL
- Tanks surrounded with "phantom detectors"
- Loss scenarios:
 - Accidental losses: scanned over various configurations of energy, beam size, hit angles and position along the DTL
 - Uniform loss, 1W/m loss
 - Nominal operation

Studied:

- Expected particle fields (type, energy, fluxes along the beam line)
- Correlation between the loss location (center) and peak position in neutron hitmaps
- Spread (RMS) of neutron hitmaps
- Threshold energy to discriminate fast/slow neutrons

Tasks:

- Support nBLM detector design, results used
 - As inputs to MC simulations to optimize detector design
 - For signal estimations
- nBLM detector layout

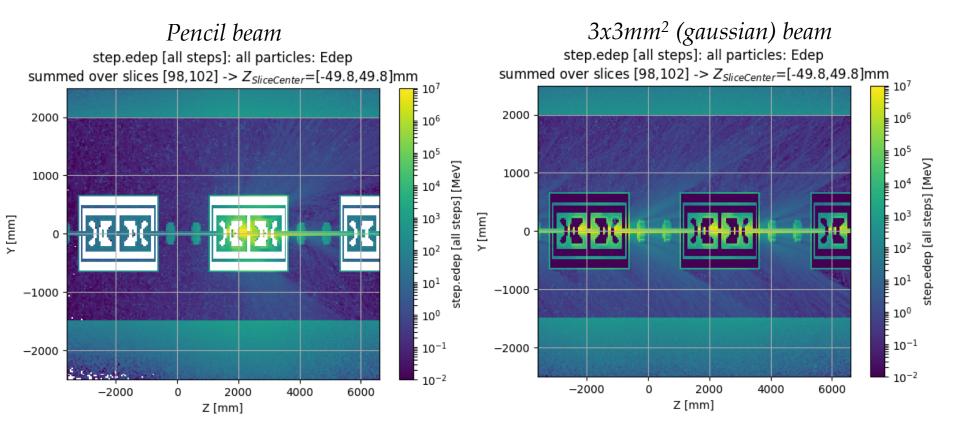


Sim2-9: loc. loss at the beginning of

the DTL5 (histogram normalized per

number of primaries): hitmap mean=-2.76m

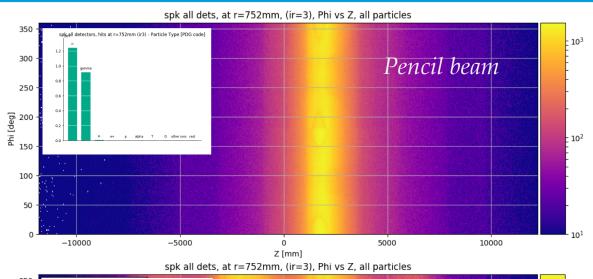
Gauss fit mean = -3.56m Peak visible ~3.5m

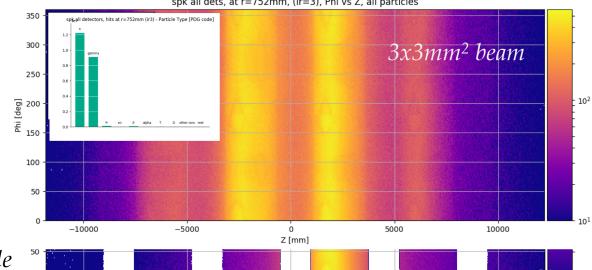

Current focus

- Cold linac
- Loss scenarios:
 - Scanned over various for various configurations of energy, beam size, hit angles and position along the cryo modules or quads
 - Uniform loss, 1W/m loss
 - Nominal operation
- Tasks:
 - Expected particle fields (type, energy, fluxes along the beam line)
 - Estimate signals/rates
 - Correlation between loss location and peak in distributions (hitmaps, Edep) & spread
 - Starting point for further studies
 - Determination of loss location (loss pattern) from the measurements (ANNs?)
 - MPS Thresholds

Example: energy deposition summed over 4 center slices along x

- 220MeV protons,
- Beam center hits inside a Spk cryo: on 1st insertion in 1st Spoke cavity
- Theta=1mrad




Example:

- 220MeV protons
- Hit center inside Spk cryo at 1st insertion in 1st Spk cavity (z=1650mm)
- Theta=1mrad

Plots:

- Phi vs Z for particles at r=752mm from the beam axis
- Particle types (n, gamma, e-,...)

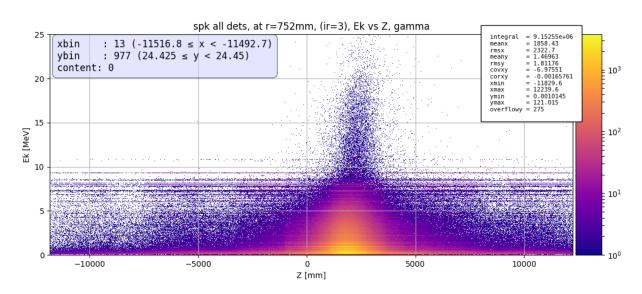
Z [mm]

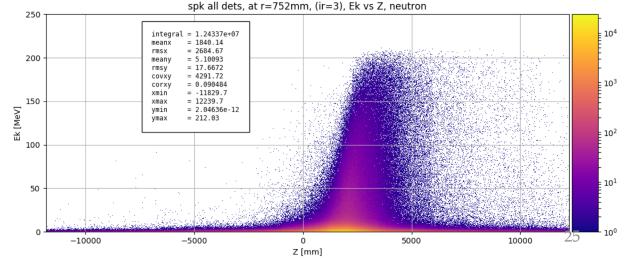
5000

10000

-5000

Cryo module positions

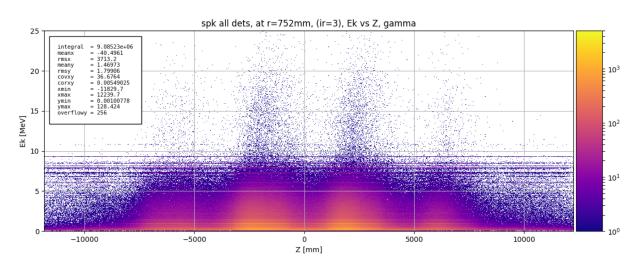


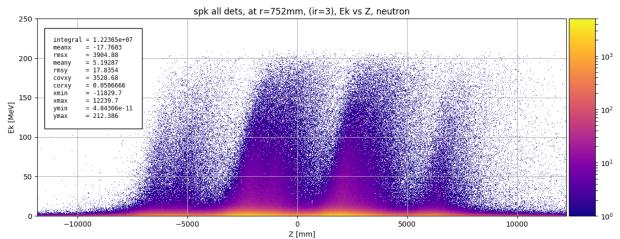

Example:

- 220MeV protons
- Hit at: 1st insertion in Spk cavity
- Theta=1mrad
- Pencil beam

<u>Plots:</u> hits at r=752mm from beam axis

 Neutron and photon energy along the beam line




Example:

- 220MeV protons
- Hit at: 1st insertion in 1st Spk cavity
- Theta=1mrad
- 3x3mm² beam

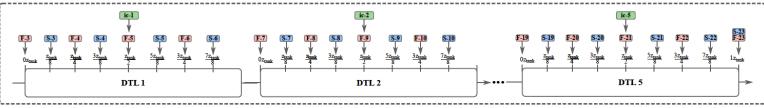
Plots: hits at r=752mm from beam axis

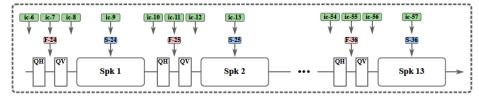
 Neutron and photon energy along the beam line

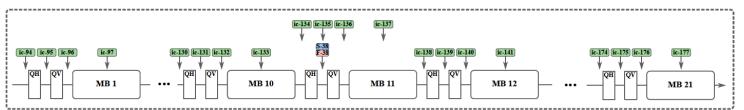
ESS BLM: detector layout (MEBT-MB)

nBLM-F vs. nBLM-S

- Majority of the linac: F and S placed separately in an alternating fashion
- At certain locations: a pair of F & S device

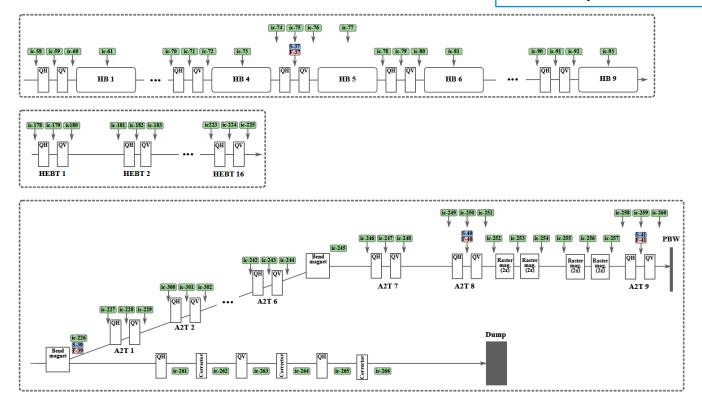

Normal conducting linac (NCL):


- nBLM:
 - MEBT: 4 devices (nBLM)
 - DTL: ~ 1 device / 1m
- icBLM:
 - DTL: 1device/tank


Superconducting linac (SCL):

- nBLM
 - Spoke: 1 device / 2m
 - Sparsely located in other parts of SCL
- icBLM:
 - 3/quad pairs
 - 1/cryo

nBLM-F vs. nBLM-S


- Majority of the linac: F and S placed separately in an alternating fashion
- At certain locations: a pair of F & S device

Normal conducting linac (NCL):

- nBLM:
 - MEBT: 4 devices (nBLM)
 - DTL: ~ 1 device / 1m
- icBLM:
 - DTL: 1device/tank

Superconducting linac (SCL):

- nBLM
 - Spoke: 1 device / 2m
 - Sparsely located in other parts of SCL
- icBLM:
 - 3/quad pairs
 - 1/cryo

