

nBLM detectors Final design, production and 1st beam loss detection

Laura Segui on behalf or nBLM Team

(laura.segui@cea.fr)

nBLM CDR1.2 12/02/2019

- Description of slow and fast detectors
- Final detector design
- Production plan
- 1st beam losses detection at LINAC4
- Results from other tests

As presented in Irena's talk

- Micromegas BLM detectors chosen for the MEBT and DTL sections.
- Detector sensitive to fast neutrons and not to thermal neutrons (shielding), X- and γrays (signal discrimination)
- 84 detectors will be delivered: 42F (fast) and 42S (slow), 8 of them in assembly SF
- System designed to be sensitive to small losses → to operate in counting mode with few n/cm2 sensitivity

→ Extension of the dynamic range to very low particle fluxes

- Current mode for higher rates, other observables can be measured (e.g. Q, ToT, ...)
- For a section where other BLMs have low sensitivity
- > The specific requirements for the system are:
 - Response in 5 µs
 - To be able to detect 100 mW/m losses.
- Two types of detectors: slow and fast
 - Different physical reaction to create the charged particles from the neutrons
 - Complementary function

• *nBLM_CDR11_SlowvsFast_nBLM_Detector.pdf* document

	SLOW	FAST	
neutron-to-charged particle convertor	B ₄ C	Mylar or Polypropylene	
Reaction	¹⁰ Β(n,α) ⁷ Li	(n,p)	
Signal produced by	Fast neutrons after moderation	Fast neutrons	
Detected energy	~constant for all initial neutron energy	Depends on initial neutron energy	
Sensitivity	10 ⁻⁴ < En < 100 MeV	En > 0.5 MeV	
Solid angle	4π	2π, n coming from the front only	
Efficiency	~few n⋅cm ⁻² ·s ⁻¹	~10-100 times smaller	
Response time	~200µs	~0.01µs	
Objective	Monitoring of small losses	Alarm (in 5 μs) Fine structure of the lost	
Shielding	Yes, for thermal neutrons	Not needed	

Detector chamber identical, differences on the: convertor and the surrounding of the slow with absorber + moderator

SLOW

- □ Absorber shielding
- Detection of fast neutrons after moderation in polyethylene (~4cm)
- Gas chamber with layer of B4C
 - ¹⁰B(n, α) ⁷Li reaction

FAST

- Recoil protons produced by neutrons in hydrogen rich material (mylar)
- □ High flux high energy n's (>0.1 MeV)
- □ Faster response

ат на нереконске 4 старияте:

Cea THE NBLM FINAL CHAMBERS

Same design for both modules

- Chamber
- Detector
- FEE & HV

Assembly of a fast and a slow detector size $\approx 20 \times 25 \times 25$ cm³ (~14 kg)

Moderator + absorber

To be made in PEEK

ат на нереконске 1 старахти

Cea THE NBLM MICROMEGAS

- Bulk Micromegas detector
- Done at the MPGD workshopat CEA/Saclay
- Active surface 8x8 cm²
- Segmented in 4 sectors to accommodate for final rates
- Only one signal output (from1 to 4 segments together)
- Operating in He+10% CO2, 1 atm
- FEE card in P. Legou talk
- HV card designed also internally by M. Combet Includes the HV filters. The ground of the HV cables can be or not connected

Presented during CDR1.1

			Rates
From MC simulation studies in the DTLs		1% 1W/m	Complete beam loss (rate in 1 st µs)
	Slow	0.1 – 68 kHz	10 MHz – 60 GHz
	Fast	1 – 400 Hz	2-700 MHz

- The nBLM system originally conceived to operate in counting mode.
- Results from simulations using ESS scenarios as input have shown that rates up to GHz can be expected in cases of <u>complete</u> losses.
- The electronics chosen to be able to cope such rates and to be operative both in counting and in current mode.
- Each neutron pulse will have a duration of about 150 ns.
 - The requirement from ESS is to send a BIS flag to MPS in 5 μ s.
 - If we monitor 1 µs window, taking into account the duration of each pulse, with ~6 events we start having pile-up (at 6 MHz)

Pieces	Company	Status
Polyethylene (moderator)	Numeca	Delivered 🗸
Neutron absorber	Mirrotron	Delivered 🗸
Detector chamber	Numeca	Delivered 🗸
Detector front face		To be ordered after CDR, 4 weeks after ordering
Detector chamber components	Swagelok, Numeca,	Delivered 🗸
Moderator support	CEA Workshop	For 12 detectors ready by March, rest TBD
PCB boards	Elvia	2 boards delivered Rest ordered, arriving in 4 weeks
Detectors support	твр	3 months for MEBT and DTL Waiting final approval from ESS for the rest
Cathodes	Sermo	Delivered
Boron convertors	ESS Detector Coatings Workshop (Linkoping)	Delivered
Mylar (fast convertor)	Good Fellows	Delivered 🗸
FEE cartes		5 delivered, Rest to be delivered by Mars 2019
HV cartes		Ordered, waiting for delivery

L. Segur

-8

Cea NBLM - DETECTOR PRODUCTION

Cea NBLM - DETECTOR PRODUCTION

	Process	Time	Where
1	Bulk of 9 detectors	1 week	MPGD Lab
2	Partial Integration of the 9 detectors	½ week	Clean room
3	Soldering of the connectors	½ week	Integration lab
4	Finalize Integration of the 9 detectors	1 week	Integration lab
5	Verification tests of the 9 detectors	1 week	Verification lab
	TOTAL for 9 detectors	4 weeks	

- First 18 detectors in 6-7 weeks from T0
- Then procedure start to overlap
- T0 may change 2-3 weeks, schedule precision 1 month
- Still 12 detectors can be ready in April

			2019															
		February	March			April		Mai			June							
		week 6 week weew	week 10	week 11	week 12	week 13	week 14	week 15	week 16	week 17	week 18	week 19	week 20	week 21	week 22	week 23	week 24	week 25
		4 to 8 11to 18t 2	4to8	11 to5	18 to22	25to29	1to5	8to12	15to19	22to26	29to3	6to10	13to17	20to24	27to31	3to7	10to14	17 to 21
Saclay nBLM AIT Operations	Bulk		Det 1-9		Det 10-18		Det 19-27	Det 28 -36	Det 37 -45	Det 46-54	Det 55-63	Det 64-72	Det 73-81	Det 82-90	Contingen cy detectors			
	Soldering			Det 1-9		Det 10-18		Det 19 -27	Det 28-36	Det 37-45	Det 46-54	Det 55-63	Det 64-72	Det 73-81	Det 82-90	Contingen cy detectors		
	Integratio n	CDR & TRAINNING			Det 1-9		Det 10-18		Det 19-27	Det 28-36	Det 37-45	Det 46-54	Det 55-63	Det 64-72	Det 73-81	Det 82-90	Contingen cy detectors	
	Gas leak					Det 1-9		Det 10 -18		Det 19-27	Det 28-36	Det 37-45	Det 46-54	Det 55-63	Det 64-72	Det 73-81	Det 82-90	Contingen cy detectors
	252Cf					Det 1-9		Det 10 -18		Det 19-27	Det 28-36	Det 37-45	Det 46-54	Det 55-63	Det 64-72	Det 73-81	Det 82-90	Contingen cy detectors

or ta esperaces à conquere

Cea NBLM – DETECTOR PRODUCTION FLOW

L. Segui

NBLM – DETECTOR PRODUCTION

Integration laboratory

Detectors Verification laboratory

Mechanics of the nBLM detector chambers L. (fgri 84 modules) at CEA

от на нерятном А стяраяти

Cea NBLM DETECTORS SUPPORTS

Three designs based on same principle

1. For DTL Region

- Integrated at ESS 3D model
- 2. For Spokes and high energy regions
- 3. For MEBT

Installation	Date	Goal of test	Results
MC40 (Birmingham)	Nov-17	First test in an accelerator	Linear response with beam current
IPHI (Saclay)	Jan-18	First test in a beam pulsed accelerator First test of FEE in accelerator First test of fast module with big neutron flux	Time Response Neutron identification (FEE test) Algorithm development
AMANDE (Cadarache)	March-18	Calibration of detectors Moderator optimization Fast module tested at high energies First gamma/neutron discrimination	Response curves as a function of moderator thickness and neutron energy
ORPHEE (Saclay)	March-18	Response to thermal neutron B4C thickness studies	Response to thermal neutrons Signal characteristics B4C thickness studies
LINAC4 (CERN)	Oct/ Dec-18	Test in real accelerator conditions Test the FEE, the DAQ and the detectors	Response to beam losses Response to gammas from RF
Saclay	Feb-19	Detailed study neutrons vs gamma Test of one final nBLM module	Gain curves Discrimination n/gamma

All details in document *nBLM_CDRfinal_ReportTests.pdf*

	Installation	Date	Goal of test	Results
N (/IC40 Birmingham)	Nov-17	First test in an accelerator	Linear response with beam current
 (PHI Sacla in J	UIY 2018	rst test in a beam pulsed accelerator First test of FEE in accelerator First test of fast module with big neutron flux	Time Response Neutron identification (FEE test) Algorithm development
(ANDE Cadarache)	March-18	Calibration of detectors Moderator optimization Fast module tested at high energies First gamma/neutron discrimination	Response curves as a function of moderator thickness and neutron energy
(ORPHEE (Saclay) March-18		Response to thermal neutron B4C thickness studies	Response to thermal neutrons Signal characteristics B4C thickness studies
L (LINAC4 Oct/ (CERN) Dec-18		Test in real accelerator conditions Test the FEE, the DAQ and the detectors	Response to beam losses Response to gammas from RF
S	Saclay Feb-19		Detailed study neutrons vs gamma Test of one final nBLM module	Gain curves Discrimination n/gamma

All details in document *nBLM_CDRfinal_ReportTests.pdf*

Installation	nstallation Date Goal of test		Results	
MC40 (Birmingham)	Nov-17	First test in an accelerator	Linear response with beam current	
IPHI (Saclay) Jan-18		First test in a beam pulsed accelerator First test of FEE in accelerator First test of fast module with big neutron flux	Time Response Neutron identification (FEE test) Algorithm development	
AMANDE (Cadarache) March-18		Calibration of detectors Moderator optimization Fast module tested at high energies First gamma/neutron discrimination	Response curves as a function of moderator thickness and neutron energy	
ORPHEE (Saclay)	March-18	Response to thermal neutron B4C thickness studies	Response to thermal neutrons Signal characteristics B4C thickness studies	
LINAC4 (CERN)	Oct/ Dec-18	Test in real accelerator conditions Test the FEE, the DAQ and the detectors	Response to beam losses Response to gammas from RF	
Saclay	Feb-19	Detailed study neutrons vs gamma Test of one final nBLM module	Gain curves Discrimination n/gamma	

All details in document *nBLM_CDRfinal_ReportTests.pdf*

 Count rate in direct correlation with beam current intensity

- In agreement with simulation
- Higher efficiency

~5% of the total in the first 5µs so possible to use for early warning. To verified during commisioning

- Fast nBLM module installed between two DTLs at ~13 MeV proton region
- Final mechanics and electronics (pre-series)
- Gas: He + 10% CO2
- Two data campaigns
 - November 2018
 - Understanding the detector, test the FMC for first time, test FEE in accelerator conditions...
 - December 2018
 - Losses were produced
 - Second test of FMC with newer version
 - Data taking with a fast oscilloscope
 - 250 Ms/s
 - Full bandwidth
 - With trigger of Linac4 also recorded
 - CEA Analysis based on C code integrated with ROOT (details in the backup)
 - Benchmark for results obtained with FMC

LINAC4 DATA

Run	Vm	Vd	ext trigger	Comments
413	550	1500	yes	Losses
414	525	1000	yes	No losses
415	525	1000	yes	Losses
416	550	1500	no	Autotrigger, no losses
417	550	1500	no	Autotrigger, no losses, signal shared with Strucks
418	550	1500	yes	No losses signal shared with IOxOS
419	525	1000	yes	Losses
420	550	1500	no	Autotrigger signal shared with IOxOS

Dec 2018

- Some history... Initially at Linac 4 we were detecting nothing so we increase the gain of the detector to force sparks to check detector was alive
- We start having events at 550V... ~50 -75 V higher gain than nominal

or talescences à l'industri

Applying amplitude cut, we recover the beam duration

- \rightarrow Neutrons produced by beam
- \rightarrow Gammas distributed all along RF pulse

LINAC4 DATA – DEC. 2018 – PROVOQUED

- Sparks appear at high gain
- Produced by the neutrons

LINAC4 DATA – DEC. 2018 – PROVOQUED LOSSES

LINAC4 DATA – DEC. 2018 – PROVOQUED

Beam Structure

LINAC4 DATA – DEC. 2018 – PROVOQUED LOSSES

LINAC4 DATA – DEC. 2018 – PROVOQUED LOSSES nBLM Run 420 – December 2018 Vm = -550V, Vd = -1500V 6 average N° events / beam pulse Neutrons Zoom of previous slide Losses were produced Uncorrelated neutrons 5 btw 20:50 - 21:05 Sparks or recovery 4 3 2

21

12/02/2019-nBLM CDR1.2

:00:00

0

20:50:00

20:55:00

21:10:00

21:05:00

LINAC4 DATA – DEC. 2018 – PROVOQUED LOSSES

от на нерепосне 1 стористии

LINAC4 DATA – DEC. 2018 – PROVOQUED LOSSES

OF LA RECEIPTION & CONDUCTION

LINAC4 DATA – DEC. 2018 – PROVOQUED LOSSES

202	NBLM DATA – NEUTRON AND
	GAMMA SOURCES

- High intensity neutron and gamma sources available from the CEA radioprotection department
- Data taken with slow module on the 6/02 08/02
- Gain curves for gammas and neutrons to determine operational point

Source	Activity (Bq)	H [*] ₁₀ at 0.5 m
AmBe (Neutrons)	10 ¹¹	275 µSv/h
Co-60	10 ⁸	1 mSv/h
Co-60	10 ⁸	100 mSV/h

- Big matrix of data to analyze
- \mathbf{n} = neutrons, γ = gammas
- Preliminary observations

Vm	Vd = Vm+25mV					
440	n	n	n	n	n	n
450	n	n	n	n	n	n
460	n	n	n	n	n	n
470	n	n	n	n	n	n
480	n	n	n , γ	n , γ	n , γ	n, γ
490	n	n	n , γ	n , γ	n , γ	n , γ
500	n	n	n , γ	n , γ	n , γ	n, γ
510	n	n	n , γ	n , γ	n , γ	n , γ
525		γ	γ	γ	γ	γ
550	γ	γ	γ	γ	γ	γ

- Big matrix of data to analyze
- \mathbf{n} = neutrons, γ = gammas
- Preliminary observations

Vm	Vd = Vm+25mV	Vd = Vm+25mV	Vd = Vm+25mV	Vd = Vm+25mV	Vd = Vm+25mV	Vd = Vm+25mV
440	n	n	n	n	n	n
450	n	n	n	n	n	n
460	n	n	n	n	n	n
470	n	P	n	յո	n	n
480	n	Above the ne	e this value	n, γ	n , γ	n, γ
490	n	^p produ	ce sparks	n, γ	n , γ	n , γ
500	H	n	n, γ	n, γ	n , γ	n, γ
510	n	n	n , γ	n , γ	n , γ	n , γ
525		γ	γ	γ	γ	γ
550	γ	γ	γ	γ	γ	γ

- Big matrix of data to analyze
- \mathbf{n} = neutrons, γ = gammas
- Preliminary observations

Vm	Vd = Vm+25mV					
440	n	Below	this value	n	n	n
450	n	rthe ga	mmasnot	n	n	n
460	n	nvisible	n	n	n	n
470	n	n	n	n	n	n
480	n	n	n , γ	n , γ	n , γ	n, γ
490	n	n	n , γ	n , γ	n , γ	n , γ
500	n	n	n , γ	n , γ	n , γ	n, γ
510	n	n	n , γ	n , γ	n , γ	n , γ
525		γ	γ	γ	γ	γ
550	γ	γ	γ	γ	γ	γ

Thank you!

Full characterization of detector in next slides

NEUTRON BLM: CHARACTERISATION AT

AMANDE FACILITY (IRSN-Cadarache): monoenergetic neutron reference fields

• Metrology

Fast module 2mm drift Testing and calibrating neutron sensitive devices (between 2 keV -20 MeV).

- Data campaign in March 2018
- Slow and fast module tested, He+10%CO₂
- At diff neutron energies:
 - 565, 1200, 2500, 5000 and 15000 keV

Slow module 0.4 mm drift, 1.5µm B₄C

12/02/2019-nBLM CDR1.2

NEUTRON BLM: CHARACTERISATION AT DIFFERENET IRRADIATION FACILITIES

AMANDE FACILITY (IRSN-Cadarache): monoenergetic neutron reference fields

Fast module 2mm drift

Slow module 0.4 mm drift, 1.5µm B₄C nBLM Goal:

- Efficiency measurements
- Comparison with Geant4 simulations
- Slow module
 - Polyethylene thickness optimization
- Fast module:
 - Convertor comparison
- Extra: gamma rejection proof
- Use charge preamplifier + Amplifier
- Acquisition with digital oscilloscope
- A shadow cone used for backscatter suppression.
- IRSN reference detectors for the flux

NEUTRON BLM: CHARACTERISATION AT **** DIFFERENET IRRADIATION FACILITIES

NEUTRON BLM: CHARACTERISATION AT DIFFERENET IRRADIATION FACILITIES

AMANDE FACILITY (IRSN-Cadarache): EFFICIENCY STUDIES

- on threshold
- on initial energy
- Efficiency between factor 5-20 smaller than slow module (as expected)
- Count rate of few /s for a neutron fluence rate of 1/s/cm2
- Polyethylene thickness fixed at 5cm

AMANDE FACILITY (IRSN-Cadarache): GAMMA REJECTION

- Rejection possible to difference in the ionization power between ions and electrons.
- The choice of He gas enhances the suppression
- With a energy threshold we can totally reject the gamma contribution
- The difference in rate observed between fast and slow due to different drift distance (1.9 mm in fast / 0.4 in slow)

IPHI, Injecteur de Protons à Haute Intensité (CEA/Saclay):

- 3 MeV proton beam
- Pulsed beam 90 µs, 1Hz repetition frequency
- Use of a Be target to produce neutrons during January-February 2018
- Goal:
 - Neutron flux measurement and characterisation
 - Test of detectors under pulsed beam
 - Time response study
 - Analysis development
- Test both slow and fast modules

With 5 mm borated rubber outside

MC40 Cyclotron (Birmingham University, UK):

ORPHEE nuclear reactor LLB, CEA Saclay: 0.01 eV neutrons, flux 2×10⁶ s⁻¹ cm⁻²

- Stable operation with high current (up to 600 nA), no discharges
- Verified that 5 mm borated rubber absorbs the thermal neutrons a reduction factor of $\sim 2.5 \times 10^{-4}$ + polyethylene $\rightarrow > 10^{-5}$
- Study the detector operation parameters (B₄C thickness, drift gap, operating voltages) to optimize signals (duration, amplitude etc.)

- No corrected by different gain
 - Small gap → no full ionization
- Factor ~5 between 0.2 1.5 μm

ORPHEE nuclear reactor LLB, CEA Saclay: 0.01 eV neutrons, flux 2×10⁶ s⁻¹ cm⁻²

- Optimum value ~2 mm
 - Rise Time ~ 45 ns and very stable
 - Pulse duration ~ 60 ns → in 1µs ~ >10 pulses/window before pile-up (~10 MHz)
- Optimized to avoid also to be very close to sparking point

PASSING FROM COUNT RATE

- > The 4 segments were recorded independently by a digital oscilloscope at 250 MS/s
- > Instantaneous rate high enough to reach the limit of **current mode**. Detector stable.

C3

C4

110

[ns]

521

473

107

108

109

106

×10

105

200

[ns]

50

100

730

816

ал на нерелосне 1 стараство

BACK-UP

CEA NBLM DETECTORS SIGNALS

SLOW

- Neutron converted at the drift entrance
- Convertor: B-10
- (n, α) reaction. The α has always the same energy.
- The produced α enters the gas volume ionizing it.
- The amplitude is almost constant as the energy is always the same. It will have a certain distribution as it depends on the angle of the emitted alpha
- Efficiency ~1% for all neutron energies
- Time response is ~150µs
 - About 10% of events detected in 4µs
 - The delay is introduced by the moderation time of the neutrons in the moderator
- Each event detected (alpha ionizing the gas) has, more or less, same pulse duration ~100-200ns

FAST

- Neutron converted at the drift entrance
- Convertor: plastic
- (n,p) reaction. P with continuum of energies
- Emitted in the opposite direction of the arrival of the neutron.
- Reaction threshold at ~0.1MeV
- The efficiency is much lower in this detector
- However, as there is no moderator the time response is very fast, of ~10ns.

от на нерелосне А стористии

neutron Beam Honitor nBLM

3

Calculate derivative and integral (Integral is never used)

The derivative is only used to help defining end of pulse

Peak identification over Noise Threshold For each peak identified calculate

- Rise Time : from 10% ampl max to 90% ampl max
- Pulse Width: find end and beginning of pulse requiring ampl to be < than a certain factor of noise threshold and using also the derivative (derivative < than a very small value~0).
- TOT

Neutron selection

- Cut in amplitude to tag neutron events.
- All variables have been calculated before, when the pulse was identified as a pulse because ampl > Noise threshold

от на нерелосне 1 стористви

Cea NBLM CEA ANALYSIS

Low gain

High gain

Low gain

High gain

or talespherical discourses

LINAC4 DATA – DEC. 2018 – PROVOQUED LOSSES

- Identified pulse by pulse if
 - Sigma of baseline too large
 - Charge of pulse too large

