

nBLM

Control and Monitoring System

Yannick Mariette 2019 / 02 / 12

- 1. Facilities and interfaces overview
- 2. First firmware tests at CERN
- 3. HV tests
- 4. HV/LV control and monitoring
- 5. Gas control and monitoring
- 6. Neutron detection control and monitoring
- 7. New control system strategy
- 8. CS planning
- 9. Tests stand at Saclay
- 10. Views for Vertical Integration Tests

FACILITIES AND INTERFACES OVERVIEW

FIRST FIRMWARE TESTS AT CERN NOVEMBER 2018

- During the CERN tests, we have tested the FPGA firmware **version 0.4**
- 3 seconds of raw acquisition
- As the pulse was less than 1 Hz, a file could contain 2 pulses
- We have done 3 runs (3 files)
- Python script to display data. With a trigger level the python script could concatenate and display interesting sections (see the adjacent picture, trigger level, pre-trigger and post-trigger could be set)

Work fine but many boot was needed before having a working acquisition system.

Dumping data into a file takes ~7 min

In parallel we used the ACT (Acquisition Chain Tester) for displaying several histograms in real time in order to try to discriminate neutron from gammas

HV TESTS WITH THE SY4527 IOC

CHERCHE À L'INDUSTR

Goal: test High Voltage stability (voltage and current)

- We provided the tool to CEA/DEDIP to store and analyse data over a long time (EPICS archiver + python scripts)
- First test of the CAEN IOC in real situation: send our feedbacks to CAEN

HV/LV CONTROL AND MONITORING

High voltage – interposed IOC

- Naming and Timestamping are not ESS compliant => interposed IOC
- Minor drawbacks:
 - SY4527 PV is still accessible by Channel Access
 - it doubles the number of PVs for controlling nBLM high voltages

- PLC factory not used
- S7PLC and Modbus server: compliant with ESS (S7PLC for monitoring and Modbus for setting)
- CEA tools:
 - PLC parser tool (CSS plugin): builds the communication IOC from a Siemens development environment
 - DXF2OPI tool (CSS plugin): autocad view conversion to CSS view
- First distribution rack integration: end of March

NEUTRON DETECTION CONTROL AND MONITORING: SOFTWARE LAYER

Type of data sample (bit structure associated to a CB channel)

- Event info -> asynchrone
- Neutron count -> 1 MHz
- Raw data -> 250 MHz •
- Periodic data -> 14 Hz •

- With firmware v0.5 boot problem has disappeared
- Registers readback does not work for multiplexed registers
- Software/firmware stability : run with all circular buffers activated during 2 days
- 1 DMA transfer at once
- Software overcharge: many software DoD (with PVs instead files)
 Periodic data at 100 Hz => linear counter in archiver

counter (100 Hz) when periodic data are pushed

Questions/Tests will done by ICS:

- Is one CT CPU is enough powerful for up to 6 IFC1410 in a crate ?
- How many working DMA channel we have ? could we have one IOC per IFC1410 ?
- Performances: All IOs runs on CT (EVR, intermediate HV/LV, gas, neutron detection IOCs)

CONTROL SYSTEM PLANNING

- Move to new strategy (IOC on CT)
- Completion of acquisition development : conversion, file transfer, firmware update adaptation
- MRF-EVR development and integration
- Completion of PLC process development
- Software development for PLC gas (communication and database)
- CSS development for a complete system
- Individual test for each subsystem development
- Acceptance tests development
- Saclay test stand preparation : archiver, EEE/alarm server, gas chassis, MTCA
 - Migration to E³ (depends on complexity and ICS support)
 - Migration with PLC factory (depends on complexity and ICS support)
 - Correction of issues
 - Documentation
 - ESS test stand preparation and installation

Page 12

TESTS STAND AT SACLAY

Second step: Vertical integration tests

3 mains tabs: **nBLM neutron detection** | Devices settings per detector | Line device settings

CSS VIEWS FOR THE VERTICAL INTEGRATION TESTS

2nd tab: Devices settings per detector

CSS VIEWS FOR THE VERTICAL INTEGRATION TESTS

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex

Etablissement public à caractère industriel et commercial | R.C.S Paris B 775 685 019

Direction de la Recherche Fondamentale Institut de recherche sur les lois fondamentales de l'Univers Service