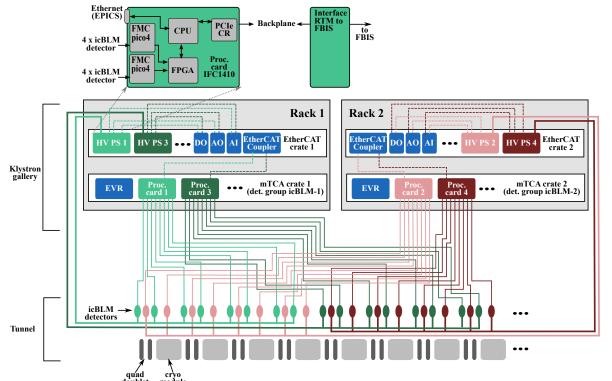


icBLM system: data processing

Irena Dolenc Kittelmann
ESS
(BLM System Lead)

Outline


- icBLM
 - Remainder
 - Background issue
- FW functionality (block diagram)
 - Background subtraction
 - Protection algo

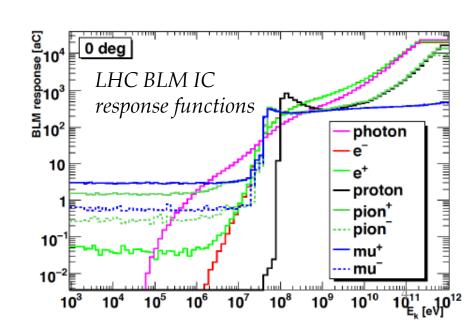
icBLM: components

Detectors

- Parallel plate gas Ionisation Chambers (ICs) developed for the LHC BLM.
- Beam loss information based on ionisation current measurement of secondaries - current mode

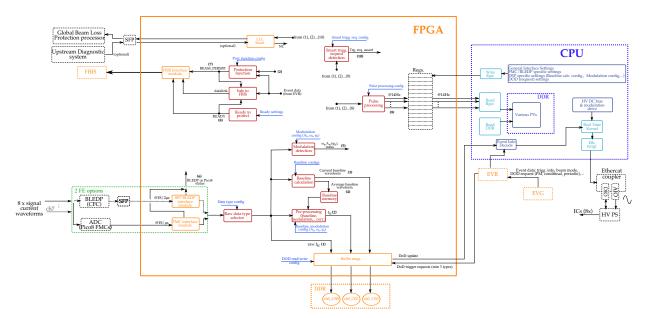
BFF

- IOxOS IFC1410
- Pico4, FMC digitizer (CAENels)
 - Modified COTS
 - 1MS/s, 20-bit ADC, 300kHz bandwidth
 - Dynamic range:
 - $-0 500 \mu A$
 - 0 10mA


HV PS

- Provides:
 - Power the ICs (1.5kV) several ICs are daisy changed and connected to one HV ch
 - Modulation voltage for system HEALTH check.
- HV module (1ch):
 - ISEG DPr 40 305 24 5_CAB High Precision HV-PS
- Ethercat crate with
 - ethercat coupler,
 - DIO (for PS config.) and
 - Analogue module (to modulate)
 - with real time kernel on the CPU.

icBLM: Background


- Photon background due to the RF cavities
 - Bckg. mainly due to el. field Emission from cavity walls, resulting in bremsstrahlung photons created on cavity/beam pipe material.
 - Levels are difficult to predict numerically depend on the quality of cavities, operation conditions and time.
 - Energy spectra estimation photons with energies up to tens of MeV in the high energy parts expected.
- Ionisation chambers
 - -"cut off" at transversal photon and electron incidence ~2MeV (~30MeV for p and n)
- Background correction in the data processing chain (on the FW level) foreseen.

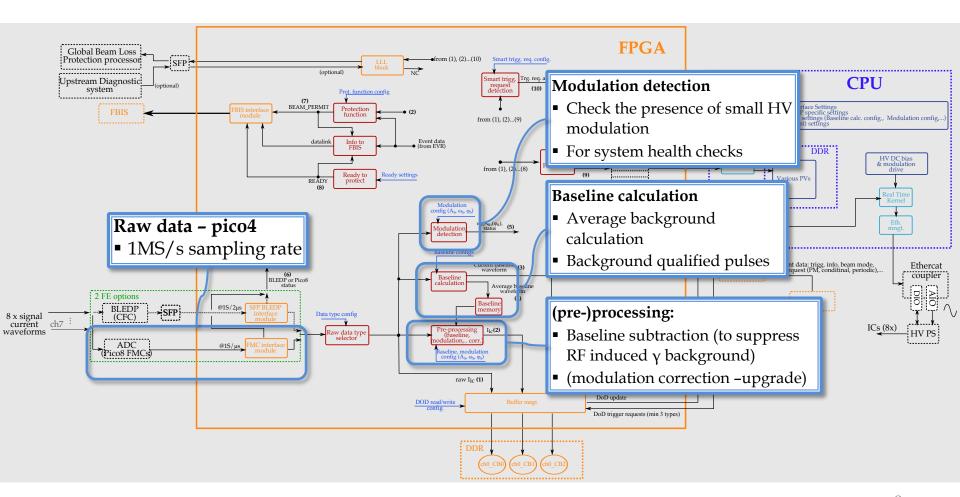
icBLM: FW functionality

- icBLM block diagram:
 - FPGA based data processing, connection to SW
 - Here: short overview of the functionality
 - More details in icBLM CDR supporting material (I.D.Kittelmann, "Requirements and technical specifications ESS nBLM system")
- Implementation details:
 - Talk by G. Jablonski
 - More in related report (part of icBLM CDR supporting material)

Processing & monitoring requirements

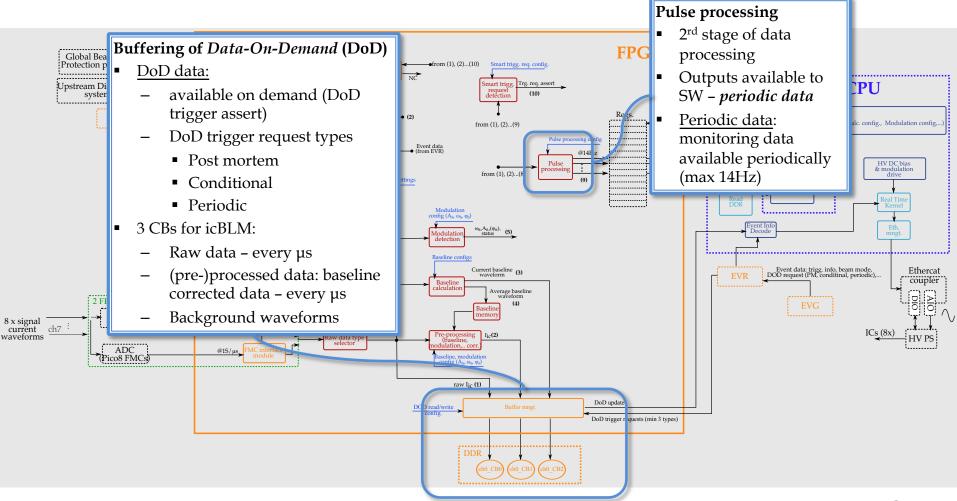
- System able to run stand alone independent of linac operation.
- Each AMC able to process up to 8 detector channels simultaneously.
- Signal samples at minimum 2MS/s
- All BLM systems follow the same approach where applicable.
- Monitoring data available either:
 - On demand DoD data
 - Periodically (@max 14Hz) periodic data

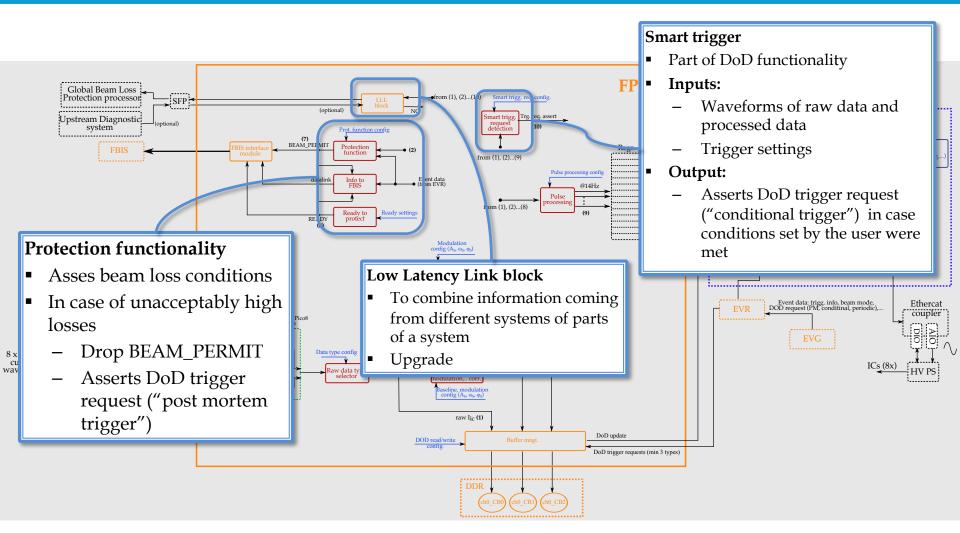
Processing & monitoring requirements



DoD data:

- Continuously buffered and accessible for retrieval without stopping the buffering.
- Min 3 consecutive pulse periods of raw data and 100 pulse periods of processed data available for retrieval on demand (pulse period = 1/(14 Hz)).
- Configurable post- and pre-trigger
- In case of raw data (processed data), the post and pretrigger can be at minimum set to select from 2 (99) pulse periods before to 2 (99) pulse periods after the tagged pulse period together minimum 3 (100) consecutive pulse periods per request.
- 3 different types of DoD trigger requests at min:
 - Post-mortem
 - Periodic (fx. 1/day)
 - Conditional (certain conditions reached in one of the systems)




icBLM: FW functionality

Background subtraction

Empty pulses

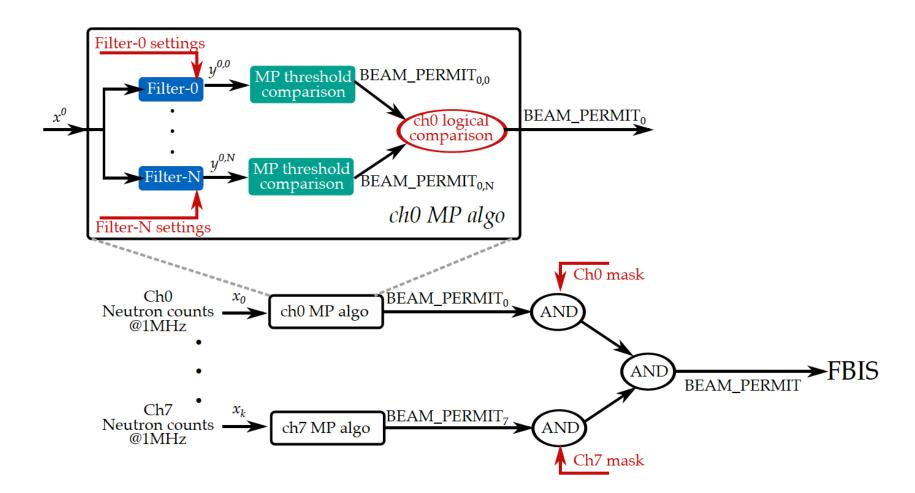
- With RF but no beam
- Used for BCM (calibration) and icBLM (background subtraction)
- Present during linac operation (including normal), one per 5-20min

"Baseline calculation" block

- Calculates mean baseline WF of the RF induced photon background.
- WF length covers RF_ON period at minimum
- Configurables:
 - WF extent over RF_ON period
 - WF position relative to the RF_ON (account for different delays in detectors)
- Only background qualified pulses included (empty pulses) identified as pulses with no BEAM_ON but RF_ON periods
- Upgrade: average calculation with forgetting factor

Pre-processing

Baseline WF subtracted for pulses with RF_ON period present


Startup:

A sequence of empty pulses after RF settings fixed, to acquire initial statistics

1 BEAM_PERMIT per AMC propagated to FBIS

Protection algorithm

- To avoid spurious BEAM_PERMIT drops
 - Filtering measurements on each channel
 - Coincidences upgrade (functioning LLL needed)
- Foreseen filter types
 - Relaxation filter (baseline)
 - Moving average (consistent with BCM)
 - Simple average (consistent with BCM)
 - X/Y algo

Relaxation filter

- 1st order IIR filter (with feedback)
- Output = weighted sum of old output y_{k-1} and new input value x_k

$$y_k = \lambda y_{k-1} + (1 - \lambda)x_k$$

- $\lambda \rightarrow 1$:
 - Forgets little
 - Comparable to moving average with large number of points

Moving average

• Calculate local average over the last time window t_{MA} (last n input points x_k)

$$y_k = \frac{1}{n} \sum_{l=0}^{n-1} x_{k-l}$$

■ Increasing *n*: smoothing improved, delay between output and input increased.

Simple average

 Calculation carried out with a fresh set of values on each calculation restart.

X/Y algo

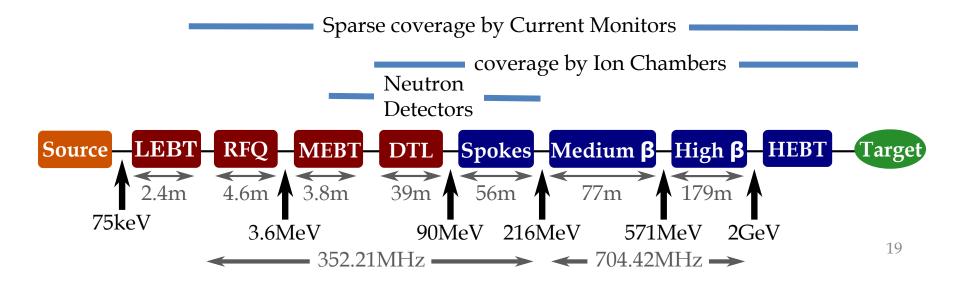
- Takes Y last number of inputs x_k
- If X out of them are above the MP threshold, BEAM_PERMIT_{c,X/Y}=1
- Input *x*: neutron counts @ 1MHz
- Output *y:* BEAM_PERMIT_{c,X/Y}

5 filter instances to be tested during commissioning:

- 2 time constants for moving average ($t_{MA,1}$ ~1us, $t_{MA,2}$ ~100us)
- Simple average over beam pulse (~3ms).
- Relaxation filter.
- X/Y algo.

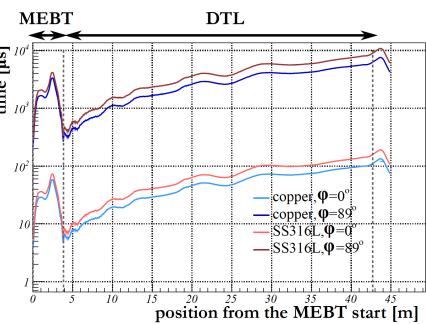
Further developments

- Foreseen based on beam commission experience and simulations
- Plan to co-develop protection functions across the BI systems providing loss information


Back up material

ESS Beam Loss diagnostic tools

(from T. Shea)


- Total beam loss, microsecond measurement latency required for protection
 - BCM, icBLM (saturation, nBLM (current mode) → Interlock; Threshold/derivative term for fast protection
- > 1.6 milliamp lost for up to 200 μs
 - BCM, icBLM, nBLM -> Interlock; Damage model for protection
- $\sim \mu C$ lost over 200 μs to many seconds (diffusion time)
 - icBLM, nBLM -> Interlock; Damage model for protection
- ~ "1 Watt/meter" radiation dose management
 - icBLM, nBLM -> alarm based on dose/activation plan

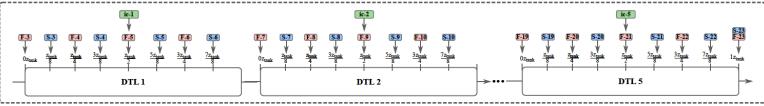
ESS BLM: Response time

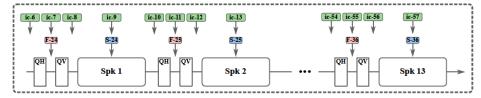
- Required response time set in the past:
 - NC linac (MEBT-DTL): ~5 μs.
 - SC linac: \sim 10 μ s.
 - Numbers based on a simplified melting time calculations, where a block of material (copper or stainless steel) is hit by a beam of protons with a uniform profile under perpendicular incidence angle, no cooling considered [9].
- Numbers re-checked with a Gaussian beam and update beam parameters:
 MEBT DTL
 - NC linac: calculated melting time values of 3-4µs imply even stronger demands on the response time (confirmed with a MC simulation as well).
 - SC linac: the 10µs requirement for response time fits well with the results of this calculations.
 However: other damage mechanisms ma mandate even shorter response time SCL (discussed further).

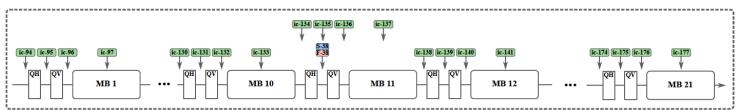
ESS BLM: detector layout (MEBT-MB)

nBLM-F vs. nBLM-S

- Majority of the linac: F and S placed separately in an alternating fashion
- At certain locations: a pair of F & S device

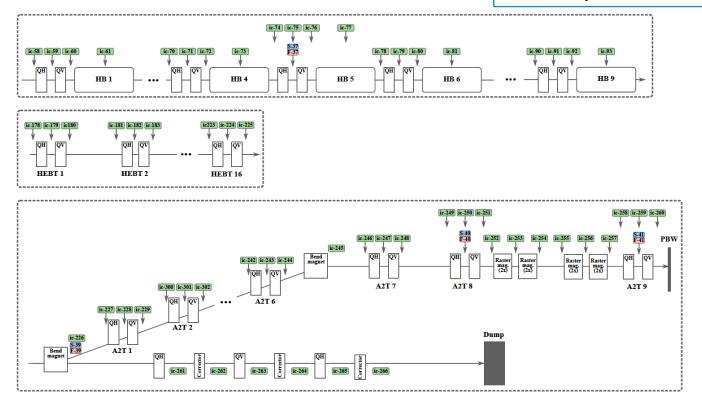

Normal conducting linac (NCL):


- nBLM:
 - MEBT: 4 devices (nBLM)
 - DTL: ~ 1 device / 1m
- icBLM:
 - DTL: 1device/tank


Superconducting linac (SCL):

- nBLM
 - Spoke: 1 device / 2m
 - Sparsely located in other parts of SCL
- icBLM:
 - 3/quad pairs
 - 1/cryo

nBLM-F vs. nBLM-S

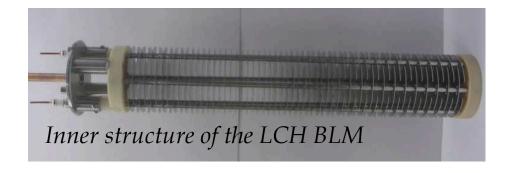

- Majority of the linac: F and S placed separately in an alternating fashion
- At certain locations: a pair of F & S device

Normal conducting linac (NCL):

- nBLM:
 - MEBT: 4 devices (nBLM)
 - DTL: ~ 1 device / 1m
- icBLM:
 - DTL: 1device/tank

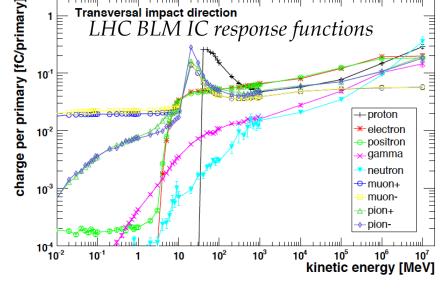
Superconducting linac (SCL):

- nBLM
 - Spoke: 1 device / 2m
 - Sparsely located in other parts of SCL
- icBLM:
 - 3/quad pairs
 - 1/cryo



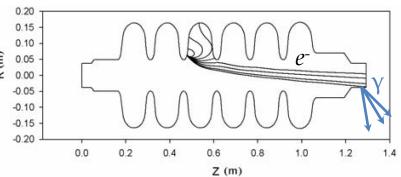
icBLM

- Parallel plate gas Ionisation Chambers (Ics) developed for the LHC BLM system will be used
- Primary BLMs in SCL
- Beam loss information based on <u>ionisation current</u> measurement of secondaries.

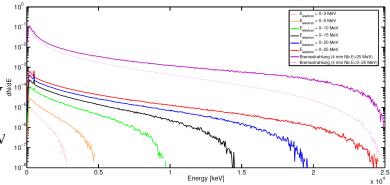

Detector property	
property	Value
detector gas	N_2
pressure	1.1 bar
diameter	9 cm
length	50 cm
sensitive volume	
length	38 cm
num. of electrodes	61
electrode spacing	5.75 mm
electrode thickness	0.5 cm
electrode diamater	75 mm
bias	1.5 kV
max e- drift time	300 ns
max ion drift time	$83~\mu s$
<energy> to create</energy>	
ion-e $^-$ pair in N $_2$	35 eV
wall thickness:	
tube	2mm
bottom plate (facing el.box)	4mm
top plate	5mm

icBLM

- "cut off" at transversal photon and electron incidence ~2MeV (~30MeV for p and n) [1].
- Photon background due to the RF cavities
 - Bckg. mainly due to el. field
 Emission from cavity walls,
 resulting in bremsstrahlung
 photons created on cavity/beam
 pipe material [3].
 - Levels are difficult to predict numerically – depend on the quality of cavities, operation conditions and time.

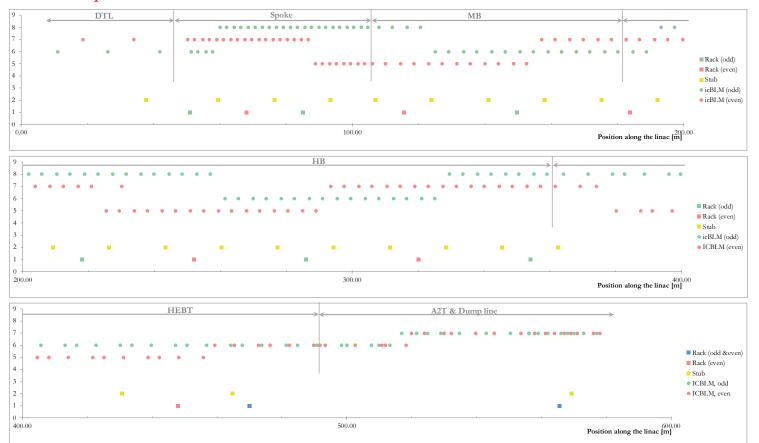


-Energy spectra estimation [4]: photons with energies up to tens of MeV in the high energy parts expected.


Background photons due to RF

• Photon background due to the RF cavities mainl due to field emission from electrons from cavity walls, resulting in bremsstrahlung photons created in the field of nuclei of cavity/beam pip materials [3].

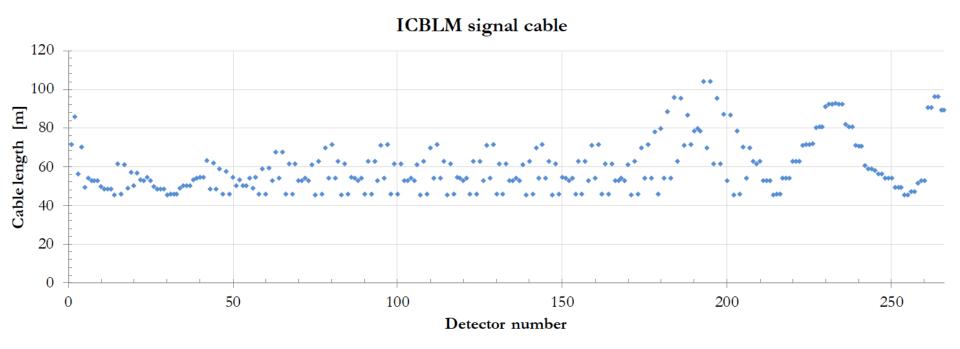
- Energy spectra estimations show that photons up to few tens of MeV can be expected [4]:
 - A MC code (FLUKA) was used for these estimations where a pencil electron beam is impacting a 4mm niobium foil.
 - Purple curves on the plot on the left show expected energy spectra for the photons produced at the exit of the foil:
 - Solid line for the monochromatic beam of electrons with energy of 25MeV
 - Dotted line for the beam of electrons with uniform energy distribution from 0 to 25MeV.
 - Spectra are normalized per number of primaries.
 - Note: maximum acc. Gradient expected at ESS ~25MeV/m, cavity size ~1m.



icBLM: electronics layout

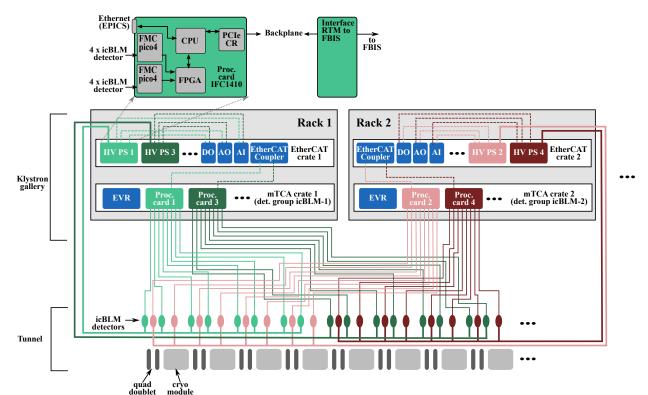
2 groups of detectors

- To limit the situations with larger parts of the system un-operational
- Signal electronics for each group placed in separate racks
 - Group1: Odd detectors
 - Group2: Even detectors



Estimated signal cable length

- Most detectors: 40 70m
- < 110m



HV connections

- Same separation scheme as for signal connections
- A set of odd/even detectors (5-7)
 - Connected a given AMC in Group1/Group2 rack X
 - Powered by a HV PS (HV ch) located in rack X

HV connections

- Same separation scheme as for signal connections
- A set of odd/even detectors (5-7)
 - Connected a given AMC in Group1/Group2 rack X
 - Powered by a HV PS (HV ch) located in rack X

Detector			Det. group	#Proc.	Detector
group	Rack	#Detectors	type	cards	distribution
ICBLM-01	SPK-010ROW	7	odd (green)	1	[7]
ICBLM-02	SPK-030ROW	20	even (red)	3	{7+7+6}
ICBLM-03	SPK-050ROW	26	odd (green)	4	{7+6},{7+6}
					(or {6+5+5+5+5+5})
ICBLM-04	MBL-020ROW	20	even (red)	3	{7+7+6}
ICBLM-05	MBL-050ROW	16	odd (green)	3	{6+5+5}
ICBLM-06	MBL-090ROW	16	even (red)	3	{6+5+5}
ICBLM-07	HBL-050ROW	16	odd (green)	3	{6+5+5}
ICBLM-08	HBL-090ROW	16	even (red)	3	{6+5+5}
ICBLM-09	HBL-120ROW	16	odd (green)	3	{6+5+5}
ICBLM-10	HBL-160ROW	19	even (red)	3	{7+6+6}
ICBLM-11	HBL-200ROW	15	odd (green)	3	{5+5+5}
ICBLM-12	HEBT-010ROW	14	even (red)	2	{7+7}
ICBLM-13	HEBT-030ROW	21	odd (green)	3	{7+7+7}
					(or {6+5+5+5})
ICBLM-14	HEBT-030ROW	12	even (red)	2	{6+6}
ICBLM-15	A2T-010ROW	16	odd (green)	3	{6+5+5}
ICBLM-16	A2T-010ROW	16	even (red)	3	{6+5+5}
Σ		266		45	

icBLM: signal

- Mode of operation
 - Current mode
- Signal range estimations (MC simulations)
 - -1% of 1W/m loss $\rightarrow \sim 800$ nA
 - 1% of the total beam loss during accidental loss scenario → few mA