

**OF SCIENTIFIC INSTRUMENTS** 

INSTITUTE

Academy of Sciences of the Czech Republic, v. v. i.

# Overview of thermal radiative properties of materials for cryogenics

### Jiří Frolec & Tomáš Králík

Institute of Scientific Instruments of the Czech Academy of Sciences Brno, Czech Republic

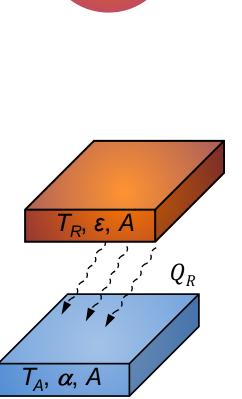
European Cryogenics Days 2019. October 7-8 2019, Lund, Sweden



## Thermal radiation

#### **Power radiated from a body**: <u>Stefan–Boltzmann law</u>: $Q_R = A \varepsilon T^4$ [W]

- A: area of the object [m<sup>2</sup>]
- $\boldsymbol{\varepsilon}$ : total hemispherical emissivity (real object: > 0% and <100%) [1]
- T: temperature of the object [K]
- $\sigma$ : the Stefan-Boltzmann constant [W·m<sup>-2</sup>·K<sup>-4</sup>]

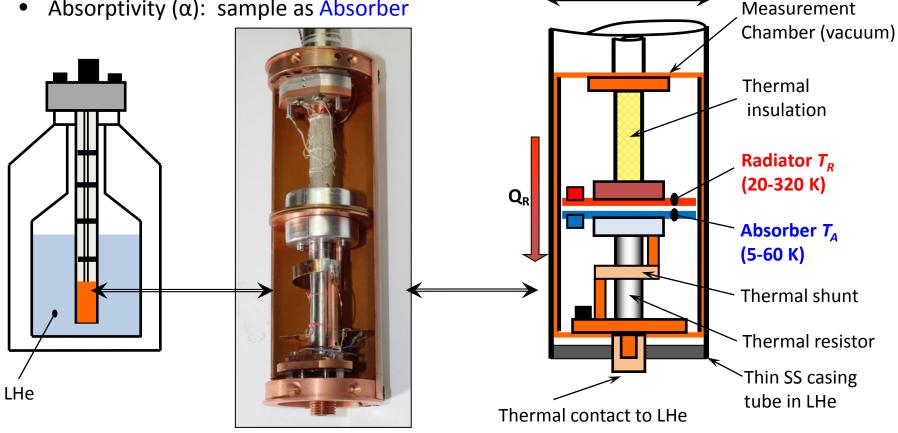

#### Heat transfer between two objects (our measurements):

- $\boldsymbol{\varepsilon}$ : total hemispherical emissivity
- $T_{R}$ : radiator temperature
- $\pmb{\alpha}$ : total hemispherical absorptivity
- T<sub>A</sub>: absorber temperature
- $\boldsymbol{Q}_{\mathrm{R}}$ : radiative heat flow

Mutual emissivity  $\boldsymbol{\varepsilon}_{\text{RA}} \approx$  total hemispherical emissivity or absorptivity

$$\varepsilon_{\rm RA}(T_R,T_A) = \frac{Q_R}{A\sigma(T_R^4 - T_A^4)} \approx \varepsilon(T_R) \text{ or } \approx \alpha(T_R)$$

Králík T, et al. 2016. Metrologia. 53(2), 743-753.






### Measurement method

48 mm

- $\blacktriangleright$  First measurements in 1986.  $Q_{\rm R}$  from flow of the evaporation of a LN2.
  - New apparatus 2003-2019 (successively improved):
    - $Q_{\rm R}$  from  $\Delta T$  on thermal resistor.
    - I. sample; II. opposite surface: "black" reference surface
    - Emissivity (ε): sample as Radiator
    - Absorptivity (α): sample as Absorber

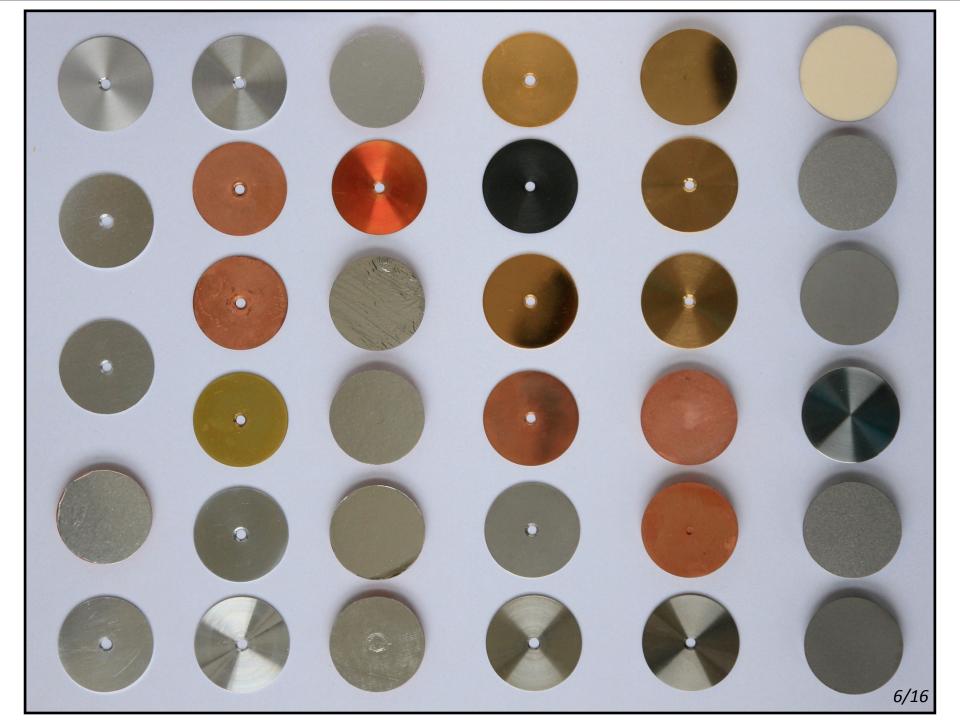


Apparatus in a Dewar vessel / Photography of opened chamber / Scheme of the measurement chamber

## **ISI** Database of emissivities and absorptivities

**Article:** Frolec, J., Králík, T., Musilová, V., Hanzelka, P., Srnka, A., Jelínek, J., 2019. A database of metallic materials emissivities and absorptivities for cryogenics. Cryogenics 97, 85-99. **DOI:** *10.1016/j.cryogenics.2018.12.003* 

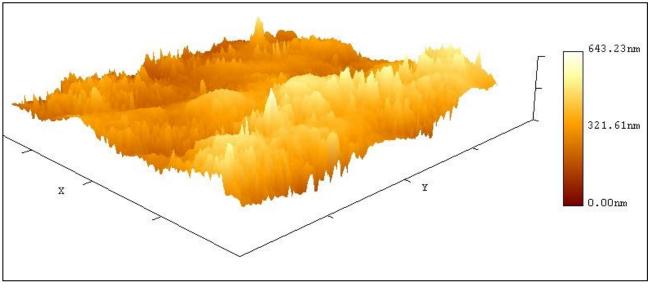
#### Related database: <u>https://data.mendeley.com/datasets/z8t423rwwd/2</u>; DOI: 10.17632/z8t423rwwd.2


| SAMPLE SPECIFICATION         |                                                    |                               |                            |
|------------------------------|----------------------------------------------------|-------------------------------|----------------------------|
| CATEGORY                     | MATERIAL                                           | PURITY / STANDARD / THICKNESS |                            |
| Bulk material:               | Stainless steel                                    | Туре 304                      |                            |
| Coating:                     | N/A                                                | N/A                           |                            |
|                              | DESCRIPTION                                        |                               |                            |
| Treatment of bulk material:  | finely turned on a lathe                           |                               |                            |
| Surface treatment:           | sand blasted with corundum (grit size approx. F22) |                               |                            |
| Surface characteristics:     | Ra = 3.06 um; Rz = 17.56 um                        |                               |                            |
| Comment:                     | N/A                                                |                               |                            |
| Sample already presented in: | N/A                                                |                               |                            |
| Date of record entry:        | 17.07.2018                                         |                               |                            |
| Sample No. :                 | 92/1                                               |                               |                            |
| MEASURED DATA                |                                                    |                               |                            |
| Sample at the position of    |                                                    |                               |                            |
| (measured quantity):         | radiator (emissivity)                              |                               |                            |
| radiator temperature [K]     | absorber temperature [K]                           | quantity value [%]            | Uncertainty (absolute) [%] |
| 20.0                         | 4.26                                               | 5.83                          | 2.88                       |
| 25.0                         | 4.26                                               | 8.12                          | 1.39                       |
| 30.0                         | 4.27                                               | 9.69                          | 0.98                       |
| 35.0                         | 4.27                                               | 11.04                         | 0.90                       |
| 40.0                         | 4.28                                               | 12.22                         | 0.91                       |
| 50.0                         | 4.31                                               | 13.97                         | 0.98                       |
| 60.0                         | 4.36                                               | 15.51                         | 1.06                       |
| 70.0                         | 4.46                                               | 16.99                         | 1.15                       |
| 80.0                         | 4.60                                               | 18.33                         | 1.24                       |
| 90.0                         | 4.81                                               | 19.47                         | 1.31                       |
| 100.0                        | 5.11                                               | 20.74                         | 1.39                       |

4/16



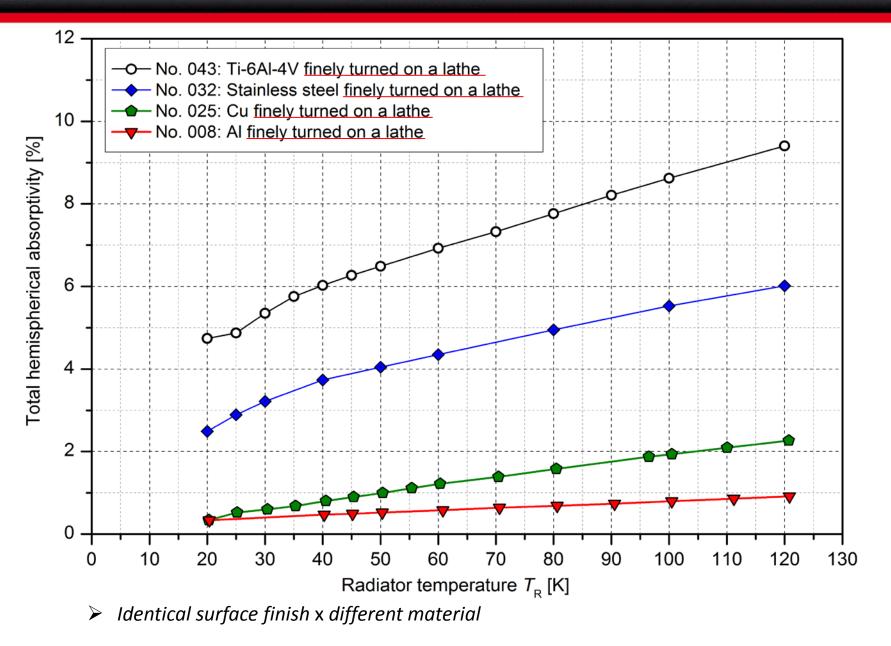
## Measured materials overview


| First treatment       | Final treatment                   | AI | Cu | <i>AlCu4Mg</i><br>(Duralumin) | Ti-6Al-4V | Stainless<br>steel | <i>Cu-Zn</i><br>brass | Al foil | Polyester + Al | Al <sub>2</sub> O <sub>3</sub> |
|-----------------------|-----------------------------------|----|----|-------------------------------|-----------|--------------------|-----------------------|---------|----------------|--------------------------------|
| N/A                   | Unfinished                        | х  |    |                               |           | x                  |                       | x       | x              | x                              |
| N/A                   | Abraded                           | х  |    |                               |           |                    |                       |         |                |                                |
| N/A                   | Etched                            |    | х  |                               |           |                    |                       |         |                |                                |
| N/A                   | Finely turned                     | х  | х  | x                             | х         | x                  |                       |         |                |                                |
| Mechanically polished | Au galvanically                   |    | х  |                               |           |                    |                       |         |                |                                |
| Finely turned         | Au galvanically                   |    |    |                               | х         |                    |                       |         |                |                                |
| N/A                   | Chemically polished               | х  | х  |                               |           |                    | х                     |         |                |                                |
| Chemically polished   | Ice layer                         | х  |    |                               |           |                    |                       |         |                |                                |
| Vacuum annealed       | Chemically polished               | х  |    |                               |           |                    |                       |         |                |                                |
| Mechanically polished | Chemically polished               |    | х  |                               |           |                    |                       |         |                |                                |
| Etched                | Chemically polished               |    | х  |                               |           |                    |                       |         |                |                                |
| N/A                   | Mechanically polished             | х  | х  |                               |           |                    |                       |         |                |                                |
| Lapped                | Mechanically polished             |    | х  |                               |           |                    |                       |         |                |                                |
| Mechanically polished | Diamond-like carbon<br>deposition |    | x  |                               |           |                    |                       |         |                |                                |
| Finely turned         | Sand blasted (finely)             |    |    |                               | х         | x                  |                       |         |                |                                |
| Finely turned         | Sand blasted (coarsely)           |    |    |                               | х         | x                  |                       |         |                |                                |
| Chemically polished   | Sputtered Au                      |    | х  |                               |           |                    |                       |         |                |                                |
| Finely turned         | Vacuum annealed                   |    | х  |                               |           |                    |                       |         |                | E /10                          |



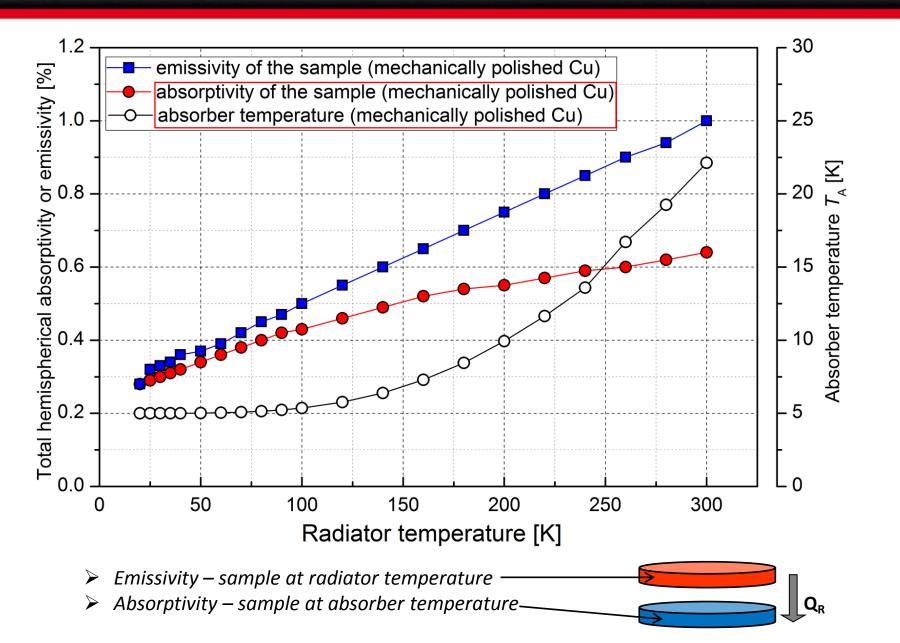


TRP are highly sensitive to the state of the material near the surface (thermal radiation interacts with very thin surface layer - tens of nm)


- 1) Surface material and its purity
- 2) Temperature
- 3) Surface finish mechanical working / chemical treatment
- 4) Contamination of the surface
- 5) Aging



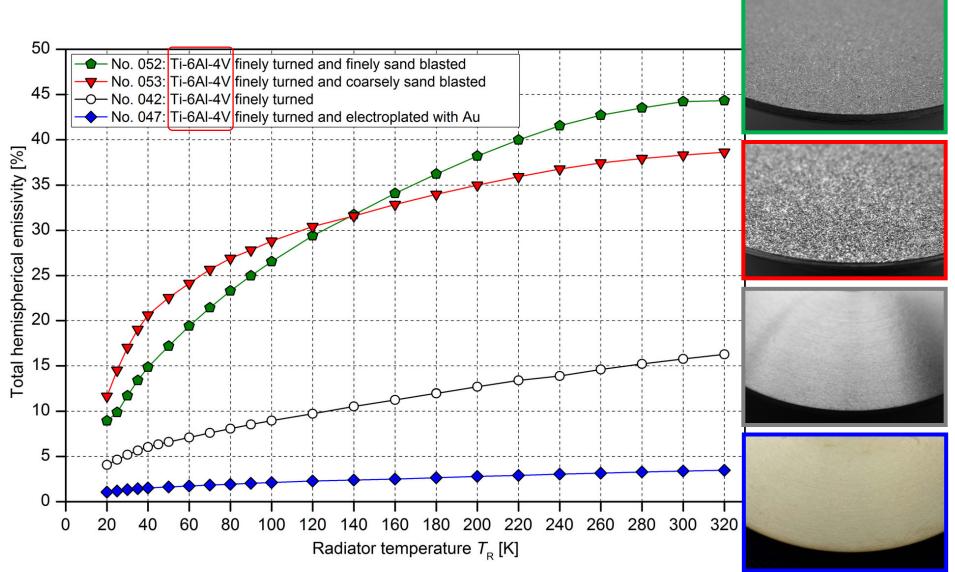
AFM image of our copper sample




### Surface material and its purity



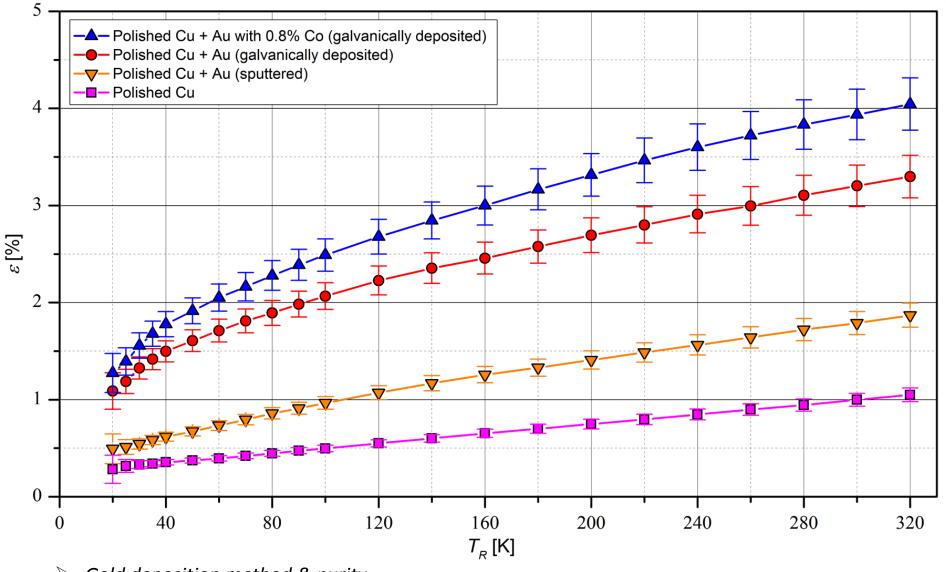



### Temperature



9/16

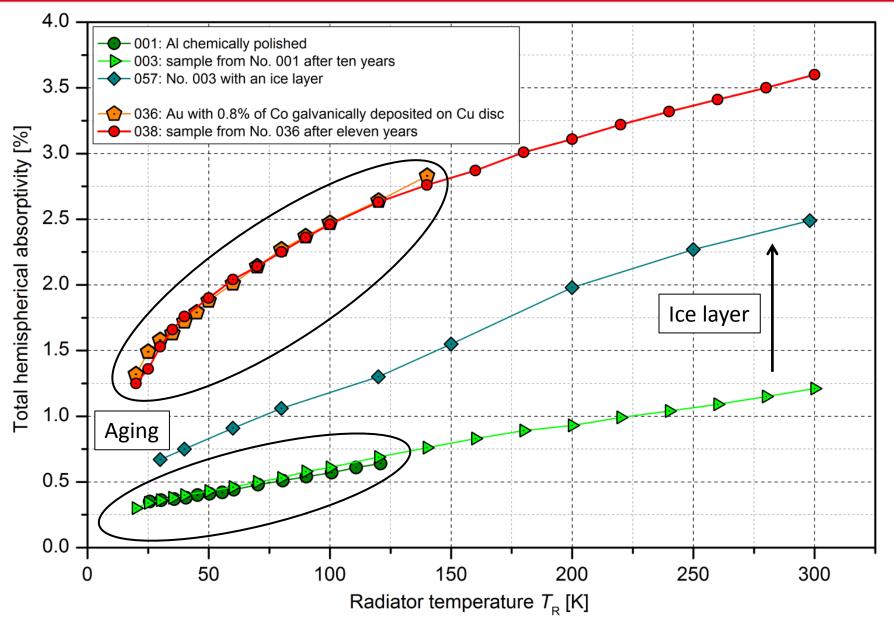



### Surface finish (I) - emissivity of titanium alloy



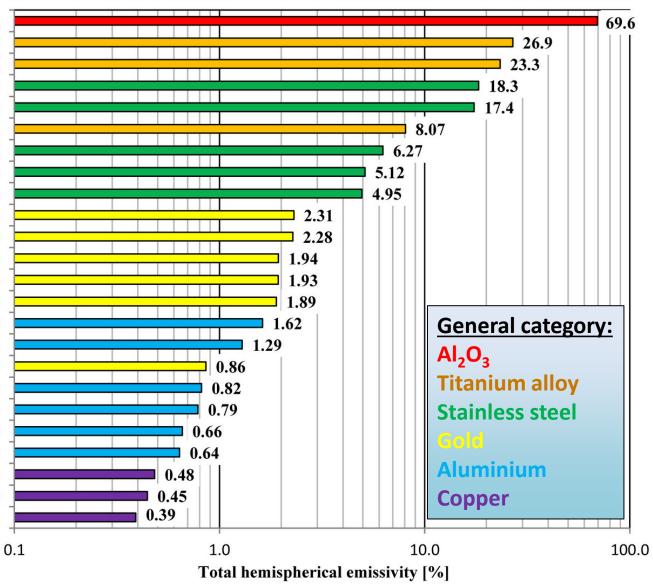
Identical material x different surface finish



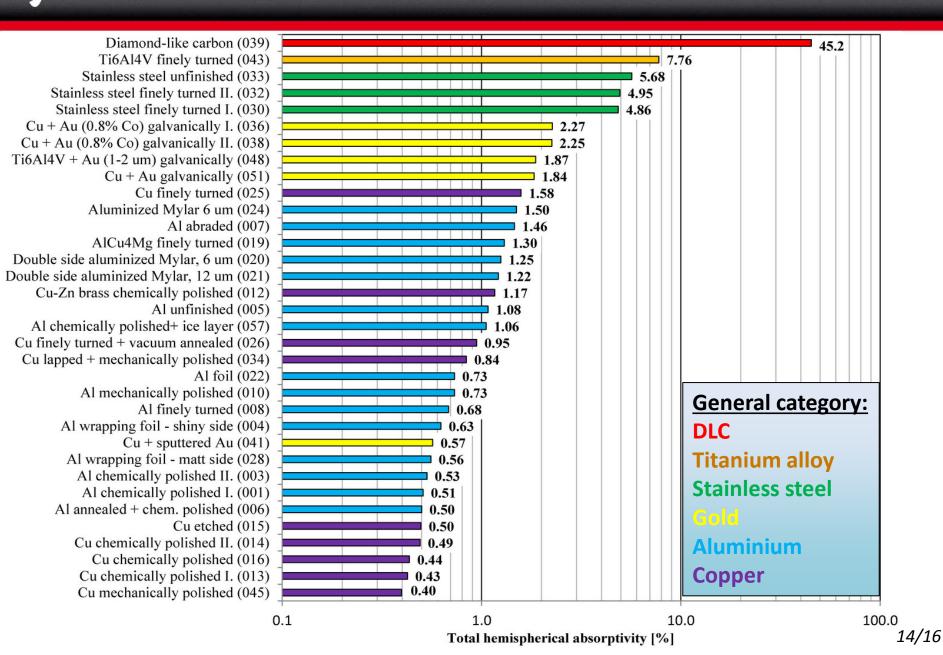

### Surface finish (II) - emissivity of gold layers



Gold deposition method & purity




### Surface contamination




### Emissivity at <u>80 K</u> (temperature of the sample)

Aluminum oxide ceramic plate (058) Ti6Al4V coarsely sand blasted (053) Ti6Al4V finely sand blasted (052) Stainl. steel coarsly sand blasted (056) Stainl. steel finely sand blasted (055) Ti6Al4V finely turned (042) Stainl. steel (rod) finely turned (054) Stainl. steel (sheet) finely turned II.(031) Stainl. steel (sheet) finely turned I. (029) Cu + Au (0.8% Co) galvanically I. (035) Cu + Au (0.8% Co) galvanically II. (037) Ti6Al4V + Au (2-3 um) galvanically (049)Ti6Al4V + Au (1-2 um) galvanically (047) Cu + Au galvanically (050) Aluminized Mylar (023) AlCu4Mg finely turned (018) Cu + sputtered Au (040)Al finely turned (009) Al mechanically polished (011) Al wrapping foil - matt side (027) Al chemically polished (002) Cu chemically polished (017) Cu mechanically polished (044) Cu mech. + chem. polished (046)



### **ISI** Absorptivity at <u>80 K</u> (temperature of the radiator)





## Conclusions (I)

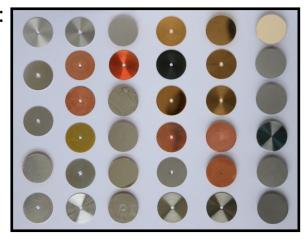
- Thermal radiative properties ε and α of metals generally depend on the T of the material and on the T of the source of thermal radiation.
- **Both** *ε* as well as *α*: highly sensitive to the state of the material near the surface.
- Surface finish: chemical treatment (polishing, etching) usually provided surfaces with lowest  $\varepsilon / \alpha$ .
- Surface contamination: thin layer of water ice: possible stronger influence on the absorptivity, higher then the natural oxide layer.

#### > Material purity:

- Significant difference in high purity **Au** vs. **Au** with 0.8% of Cobalt
- > Cu or Al with technical purity are satisfying; very pure material is not effective to reduce  $\alpha$  (calculated absorptivity of Cu ASE theory).



## Conclusions (II)


Comprehensive **database** of thermal radiative properties ( $\varepsilon$ ,  $\alpha$ ):

- 58 measurements of 45 different samples
- temperature dependences (plots & numbers)
- mostly metallic materials with different surface finishes
- > publicly available at:

https://data.mendeley.com/datasets/z8t423rwwd/2 DOI: 10.17632/z8t423rwwd.2

Values of  $\alpha$  and  $\epsilon$  for metallic samples at cryogenic temperatures:

- below 1% : can be achieved mainly on polished Al, Cu, (Au)
- > up to ≈ 10%: most common (e.g. finely turned surfaces, alloys)
- higher than 10%: a special treatment (sandblasting, layers, ...)



