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  some unphysical 
- How to select the most probable  
  set of parameters 
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Problem:  
- Several possible parameters,  
  some unphysical 
- How to select the most probable  
  set of parameters 

Solution:  
Analysis with Bayesian regularization 

Andreas Haahr Larsen  
Niels Bohr Institute 
Bayes for Scattering,  
May 6th 2019 
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Challenges in Bayesian 
regularization 

1.  Determining α: 
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evidence Occam term 

Probability 

Occam’s razor: 
Choose the simplest explanation 
 

MacKay, D. J. C. (1992). Adv. Neural Inf. Process. Syst. 4, 839–846 
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Challenges in Bayesian 
regularization 

1.  Determining α: 

2.  Choose prior 
Case 1: From experiment 
Case 2: General knowledge 
Case 3: Unknown 
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evidence Occam term 

prior for α  Probability 

Occam’s razor: 
Choose the simplest explanation 
Here: same as prior (large α) 



Benefits of Bayesian 
regularization 

1.  Most probable solution 
found 
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Benefits of Bayesian 
regularization 

1.  Most probable solution 
found 

2.  Better error determination 
3.  Stable solution for noisy 

data 
4.  Measure for information 

-  include prior knowledge 
-  depends on model 
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Bayes for Indirect Fourier Transformation 
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www.bayesapp.org 
Hansen, 2000, J. Appl. Cryst., 33, 1415-1421 
Hansen, 2014, J. Appl. Cryst., 33, 1469-1471 

IFT 

smoothness  
constraint 



Perspectives 

 

•  Include in SasView, WilItFit 
and similar programs 
 

•  Combining SAXS and SANS 

•  Other techniques, e.g. 
reflectometry 
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See more: 
Larsen, Arleth & Hansen, 2018,  
J. Appl. Cryst. 51, 1151-1161. 
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Problem:  
- Several possible solutions,  
  some unphysical 
- How to select the most probable  
  solution 
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