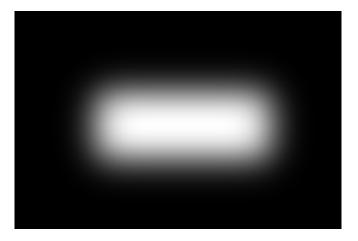
FPGA video processing for target imaging systems

Håvard Gjersdal


University of Oslo

October 22, 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - の�� 1/13

Motivation

- Target imaging systems will produce an image for each pulse.
- We must be able to detect errant beam conditions in time for the next pulse.
- FPGAs offer fast, fixed latency image processing.
- Framegrabber, Algorithms, EPICS

Hamamatsu ORCA-flash4.0 V3 digital CMOS

- 2048 × 2048 pixels, 16 bits per pixel
- 1.4 e⁻ rms readout noise, 30k e⁻ full well capacity
- Camera link Full Configuration Deca Mode
- In theory 100 frames per second, light sheet mode limits to 49 FPS
- 85MhZ, 5 pixels in parallel

Hardware

- Enclustra Mercury XU1+ Xilinx Zynq UltraScale+ MPSoC Module
- Enclustra Mercury PE1-400 base board
- Alpha data FMC for Camera Link
- In-house made VGA connector card

Frame grabber

- Interface between camera and FPGA is 21 LVDS lines.
- 15 of these lines are inputted to the frame grabber
- 3 channels, each with 4 data lines, one clock line.
- ▶ 6 lines for camera controll and configuration, not part of grabber.

Vivado functional simulation

 \rightarrow Frame Grabber \rightarrow AXI4 stream \rightarrow

<ロ> < 回> < 回> < 目> < 目> < 目 > のへで 5/13

Algorithms

- Developed in Vivado-HLS
- 5 pixels in parallel at 85 MhZ
- Before VDMA
- Median, CoG, (beam-in-box, max intensity)

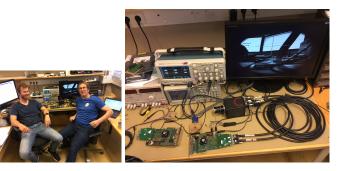
	1212/08/06/	a d (+ + + +) (+ + + +) (+) (+	O Drive P. Systems & Analy
Subplace 2		YOU dissearching LogMag 1	D D One D Gallers "
 Copy (Am) Copy (Am)			P (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
h Dreelog		Const D. Three & Berry	RUND-D-X-T

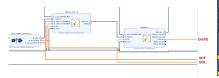
<ロ> < □> < □> < 三> < 三> < 三> 三 のへで 6/13

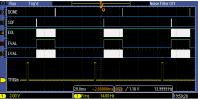
Demo of Median Filter and Center of Gravity

Frame Grabber \rightarrow Median filter \rightarrow CoG \rightarrow VDMA \rightarrow CrossGen \rightarrow VGA

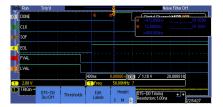
HLS test bench, C-simulation/RTL-simulation


114 IPIImage* dst = cwCreateImage(cvSize(cols, rows), 16, 1); 115 IPIImage* src = cwLoadImage(INPUT_IMAGE, CV_LOAD_IMAGE_ANYDEPTH); 116 AXI_STREAM src_axi; 117 AXI_STREAM dst_axi; 118 AXI_STREAM dst_axi; 120 IPIImage2AXIvideo_80bit(src, src_axi); 121 Median_Filter(src_axi, dst_axi, 1, rows, cols); 123 AXIvideo2IpIImage_80bit(dst_axi, dst); 124 AXIvideo2IpIImage_80bit(dst_axi, dst); 125 cvSaveImage(OUTPUT_IMAGE, dst);


 \Rightarrow



Timing


< □ > < @ > < E > < E > E の Q @ 9/13

Trigger rate: 28 hZ

Interrupt arrives 470ns after final EOL

Tek Run	Trig'd	E I		ý		loise Filter Of	1
DONE							
1 SOF							
4 EOL							
FVAL		1					
3 LVAL							
TRIGin —							
			20.0ms -	2.88000ms 111	Z 1.18 V	13.9999 Hz	
1) 2.00 V			1 Freq	14.00 Hz			19:50:28

Software

 Currently running bare-metal implementation for initialization and ISR, developed in XSDK

- Goal is to run EPICS on linux
- AreaDetector for camera read-out and configuration
- Configure IPs (thresholds, windows ...)
- Have been able to get framed from VDMA to V4L (Zybo-Z7 Zynq-7010)
- Have working Yocto layers for EPICS and AreaDetector
- A lot of work remaining on SW/EPICS

Summary

- Thanks to David Michael Bang-Hauge!
- Thanks to Ole Røhne!
- More info on the wiki
- We should be able to deliver a test platform with camera by christmas.

Thanks for listening!

◆□ → ◆□ → ◆ ■ → ▲ ■ → ● ○ ○ ○ ○ 13/13