

EUROPEAN SPALLATION SOURCE

Towards MALESS (MAchine Learning for accelerator and target diagnostics at ESS)

> Elena Donegani Clement Derrez Irena Dolenc-Kittelman Thomas Shea

Beam Instrumentation Forum Warsaw, 23 October 2019

ML for Physics - just the two extremes

E55

EUROPEAN SPALLATION SOURCE

Dark matter or new physics

[1]

Achieving 100 ns Inference Latency on 150 Terabytes/Second Data Rates

Multi-messenger astronomy

[2]

Numerical relativity simulations of MMA sources, DL + HPC

Very few algorithms are used for accelerator or target control systems. Main **drawbacks**:

- Limited data sets
- Simplified simulation tools

Challenges at ESS (with unprecedented linac power and neutron brightness):

- It's a large scale facility, complex and data-intensive
- Monitor a multitude of independent sub-systems
- Predict all the possible dangerous beam and target conditions

- ...

 \rightarrow Outperform time-consuming simulation tools i.e. reduce the time spent for tuning

- \rightarrow Identify **subtle changes** in key variables prior to devastating events
- \rightarrow Allow for **automated correction** procedures

Proposed MALESS project

"Learn by looking at BD data"

Submitted in August-2019

Methodology

1) Identify relevant diagnostics data

- From SNS database and newly deployed systems at ESS (e.g. BLM, BPM, ΔI)
- Include information from MC simulations (e.g. Geant4 and MCNP)

2) Explore software tools from Xilinx and Struck

- To maximize the amount of processed diagnostics data
- To minimize the time to test algorithms

3) Evaluate ML tools and select the most promising one:

- Capability of modelling the desired functionality
- Practicality as control system

4) Verify the algorithm, as implemented on a low-latency network of FPGAs

5) Monitor the performance under controlled studies

Schedule

from key ESS BD systems in addition to SNS data	1/1 - 31/10	SPALLATION NEUTRON SOL		SPALLATION SOURCE
Report	= <mark>∋) d</mark> ay⊈/11 - 15/11			
Develop ML techniques	196 days	16/11 - 16/8		
MORE DATA	=196 days	16/11 - 16/8		
Report		4 <mark>1 d</mark> ay ±7/8 - 31/8		
Develop Machine Protection Functions		173 days	1/9 - 30/4	
EVEN MORE DATA		173 days	1/9 - 30/4	
Report			—2 <mark>2 da</mark> y®1/5 - 31/5	
Optimization of ML techniques and MPF			131 days	1/6 - 30/11
Final reports, conference, publications				22 day⊚1/12 - 31/12
2020 2020	2021	2022		2022

EUROPEAN

	Potential Risk	Mitigation
1	Beam diagnostics systems not ready for deployment	Plan testing and bug fixing ahead. In addition, focus on training with simulation results and deploy in laboratory systems
2	Failure of critical beam diagnostics systems	Spares
3	Scope creep	Incremental development practices

Conclusions

MALESS = <u>MA</u>chine <u>Learning</u> for accelerator and target diagnostics at <u>ESS</u>

Assess diagnostics data to work out **predictive techniques** in order to:

- Predict errant beam conditions
- Minimize damage to high power linac and target station
- Maximize the overall ESS availability \rightarrow minimize reparation
- Improve beam dynamics modelling

Ideas:

- Start with SNS operation data (13 y+)
- Collect data and perform tests at ESS
- Improve the design of **future** accelerators, targets, ADS, ESSvSB

TIROPFAN

SOURCE

EUROPEAN SPALLATION SOURCE

[1] https://cms.cern/detector

[2] Deep Learning for Multi-Messenger Astrophysics: a Gateway for Discovery in the Big Data Era <u>https://arxiv.org/pdf/1902.00522.pdf</u>