Interaction of X-rays and Neutrons with Matter

Jean Daillant

Joint French-Swedish School on X-rays and Neutrons Techniques - Ifor the Study of Functional Materials for Energy

Lund, 13 May 2019

- Provide you with a simple conceptual framework to understand synchrotron and neutron experiments.
- Give an overview of the methods which will be discussed during the week and introduce vocabulary.
- Give orders of magnitude.

Introduction
Production of X-rays and Neutrons
Synchrotron Radiation
Free Electron Lasers
Neutron Sources
Interactions of X-rays and Neutrons with
Matter
Photons and Neutrons
Fundamentals of Scattering
Elastic Scattering
Elastic Scattering in the Born
Approximation
Scattering Lengths
Reflection from Surfaces
Refractive Index
Inelastic Scattering, Spectroscopy
Compton Scattering
Absorption
Photoelectric Effect - Photoemission
Fluorescence
Absorption Spectroscopy
Resonant processes
Neutron spin-echo

Production of X-rays and Neutrons

Radiation by a moving charge: $\mathbf{E}=\frac{q}{4 \pi \epsilon_{0} c^{2} R} \mathbf{n} \times \mathbf{n} \times \mathbf{a}$
$E=\frac{q \sin \theta}{4 \pi \epsilon_{0} c^{2} R}$

$$
\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

a.

- Emission in a cone $\approx 1 / \gamma$, with $\gamma=E / m_{e}-c^{2} ; m_{0} c^{2}=511 \mathrm{keV}$; for $\mathrm{E}=2.75 \mathrm{GeV}, \gamma=5382,1 / \gamma$ $=0.186 \mathrm{mrad}=0.01 \mathrm{deg}$
- Polarization Relativistic effects

- Doppler effect
- $\lambda=\left(1-\frac{v}{c}\right) \lambda_{0}=\frac{1-\beta^{2}}{1+\beta} \lambda_{0} \approx \frac{\lambda_{0}}{2 \gamma^{2}}$ as $\beta \approx 1$.
- X-rays!
- Magnetic field: $B_{z}=B_{0} \cos \left(2 \pi x / \lambda_{0}\right)$
- Lorentz force:

$$
\gamma m_{0}\left(d v_{y} / d t\right) \approx e v_{0} B_{0} \cos \left(2 \pi x / \lambda_{0}\right)
$$

- Trajectory:

$$
\begin{aligned}
& y=-K \lambda_{0} /(2 \pi \gamma) \cos \left(2 \pi x / \lambda_{0}\right) \\
& \text { with } K=E B_{0} \lambda_{0} /\left(2 \pi m_{0} c\right) \text { the } \\
& \text { undulator strength. }
\end{aligned}
$$

With $\mathrm{E}=2.75 \mathrm{Gev}, B_{0}=1 \mathrm{~T}, \lambda_{0}=20 \mathrm{~mm}, \mathrm{~K}=1.9$, the maximum deviation of the e^{-}beam is $1.1 \mu \mathrm{~m}$.
Over λ_{0}, extra distance $\delta L=$
$\int_{0}^{\lambda_{0}}\left(\sqrt{1+(d y / d x)^{2}}-1\right) d x=K^{2} \lambda_{0} /\left(4 \gamma^{2}\right)$
Time needed by the e^{-}to cover a period is larger than time needed by the photon by: $\delta t=$ $\left.\lambda_{0}+\delta L\right) / v_{0}-\lambda_{0} / c=\lambda_{0} /\left(2 \gamma^{2} c\right)\left(1+K^{2} / 2\right)$.
\rightarrow Harmonics: $\frac{\lambda_{0}}{2 n \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)$

Synchrotron Radiation Facilities

Free Electron Lasers

$$
I \propto N_{e^{-}}^{2}
$$

FELs

Fission:

- Capture of a neutron by a "fissionable" nucleus; exothermal chain reaction.
- A few ($\propto 1$) neutron per event; mainly evaporation from fission fragments.

National Nuclear Data Center, BNL

Spallation:

- High energy $\mathrm{p}^{+}(1 \mathrm{GeV})$ hits a heavy metal target (e.g. Hg).
- $\propto 10$ neutrons per p^{+}; intra- and inter-molecular cascade followed by evaporation.
- Naturally pulsed sources.

G.J. Russell, ICANSXI, Tsukuba, 1990

Neutron Facilities

https://www.iucr.org/resources/commissions/neutron-scattering/where-neutrons

Production of X-rays and Neutrons

X-ray and Neutron Interactions with Matter

Elementary particles in the standard model

Neutron:

2 down quarks, 1 up quark
Mass $1,675 \times 10^{-27} \mathrm{~kg} \approx 940 \mathrm{MeV} / \mathrm{c}^{2}$
No charge
Spin 1/2

Photon:

Quantum of electromagnetic field and carrier of electromagnetic force
Zero mass, travels at the speed of light Polarization

Photons:

Maxwell equations in a vacuum:

$$
\begin{aligned}
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial \mathbf{t}} \\
\nabla \times \mathbf{B} & =\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial \mathbf{t}}
\end{aligned}
$$

\rightarrow Propagation equation:
$\nabla \times \nabla \times \mathbf{E}+\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial \mathbf{t}^{2}}=-\nabla^{2} \mathbf{E}+\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial \mathbf{t}^{2}}=0$
Solution: Plane waves
$A_{0} \exp i\left(\omega t-k_{0} x\right) k_{O}=\omega / c$
Wavelength $\lambda=2 \pi / k_{0}$
Momentum $\mathrm{p}=\mathrm{h} / \lambda=\mathrm{E} / \mathrm{C}$
Energy $E=h c / \lambda=\hbar \omega=h \nu$

Neutrons:

Schrödinger equation:

$$
i \hbar \frac{\partial|\psi\rangle}{\partial t}=\mathcal{H}|\psi\rangle ; \quad \mathcal{H}=\frac{\mathbf{P}^{2}}{2 m} ; \quad \mathbf{P}=\frac{\hbar}{i} \nabla
$$

Stationary solution: $-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=E \psi$.
Solution $A_{0} \exp i(k x-\omega t)$
$E=\hbar \omega=h \nu ;=\frac{\hbar^{2} k^{2}}{2 m}$
$\lambda=h / p$ (de Broglie); $p=\hbar k \sqrt{2 m E}$
"Thermal neutrons"
$300 \mathrm{~K} ; k_{B} T=4.1 \times 10^{-21} \mathrm{~J}=0.0256 \mathrm{eV}$
$\lambda=h / \sqrt{2 m E} \approx 1.78 \AA$;
$v=h / m \lambda \approx 2.22 \mathrm{~km} \cdot \mathrm{~s}^{-1}$.
\rightarrow Time-of-flight $\equiv \mathrm{E}$

Exchange of energy?

- No: "Elastic scattering". Information on distribution of matter only.
- Yes: "Inelastic scattering": also information on the energy distribution in the sample (whatever it is).

$$
\text { Scattering } \leftrightarrow \text { Spectroscopy }
$$

Coherent or incoherent process?

- Yes: Possibility of interferences. Structural information can be recovered.
- No: No possibility of interferences, structural information is lost.

The differential scattering cross-section $d \sigma / d \Omega$ is the intensity scattered per unit solid angle in the direction $\mathbf{k}_{\text {sc }}$ per unit incident flux in the direction \mathbf{k}_{in}.

$$
I=\Phi_{0} \int_{\Omega} \frac{d \sigma}{d \Omega} d \Omega
$$

Dimension of an area.

Elastic Scattering

Born Approximation

Plane wave: $A \exp i(\omega t-\mathbf{k} . \mathbf{r})$ Phase shift: $\left(\mathbf{k}_{\text {sc }}-\mathbf{k}_{\text {in }}\right) \cdot \mathbf{r}$
$\frac{d \sigma}{d \Omega}=\left|\sum_{j} b_{j} e^{i \boldsymbol{q} \cdot \mathbf{r}_{j}}\right|^{2}=\sum_{j} \sum_{k} b_{j} b_{k} e^{i \mathbf{q} \cdot\left(\mathbf{r}_{\mathbf{j}}-\mathbf{r}_{\mathbf{k}}\right)}=b^{2}\left|\int d \mathbf{r} \rho(\mathbf{r}) e^{i \boldsymbol{q} \cdot \mathbf{r}}\right|^{2}$
ρ : density of scatterers
b_{j} : scattering lengths
b : scattering length density
For x-rays: $b=r_{e}=\left(e^{2} / 4 \pi \epsilon_{0} m_{e} c^{2}\right)=2.810^{-15} m$, classical radius of the electron
For neutrons, $\mathrm{b} \sim \mathrm{fm}\left(10^{-15} \mathrm{~m}\right)$ depends on atom, isotope, can be >0 or $<0 \rightarrow$ isotopic substitution $\left(\mathrm{D}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}\right)$

Thomson Scattering Length (X-rays)

Low atomic numbers, $\omega \gg$ atomic frequencies \rightarrow free e^{-}

$$
m_{e} d \mathbf{v} / d t=-e \mathbf{E} e^{i \omega t}
$$

Free electrons

$$
m_{p^{+}} \approx 1836 \times m_{e^{-}}
$$

$r_{e}=e^{2} / 4 \pi \epsilon_{0} m c^{2}=2.818 \times 10^{-15} m$ classical electron radius (Thomson radius).

Note : with $\omega=2 \pi c / \lambda, p=-\left(\epsilon_{0} \lambda^{2} r_{e} / \pi\right) E$.

Nuclear Scattering (Neutrons)

Fermi pseudo-potential (Strong interaction)

$$
V(r)=\left(2 \pi \hbar^{2} / m\right) b \delta(r)
$$

b depends on isotope and spin \rightarrow isotopic substitution

$$
b=b_{c}+\frac{1}{2} b_{N} \mathbf{I} \cdot \sigma,
$$

describes the interaction between the neutron spin and the nuclear magnetic moment. Eigenvalues of I. σ are I for $J=I+1 / 2$ and $-(I+1)$ for $J=I-1 / 2$. With b^{+}and b^{-} the corresponding scattering lengths,

$$
\left\{\begin{array}{l}
b^{+}=b_{0}+\frac{1}{2} b_{n} I \\
b^{-}=b_{0}-\frac{1}{2} b_{n}(I+1)
\end{array}\right.
$$

Fig. 2. Neutron and x-ray scattering cross-sections compared. Note that neutrons penetrate through Al much better than x rays do, yet are strongly scattered by hydrogen.

Anomalous scattering of x-rays

Classical description in an harmonic potential including damping:

$$
m d^{2} \mathbf{x} / d t^{2}=-m \omega_{0}^{2} \mathbf{x}-2 m \gamma d \mathbf{x} / d t-e \mathbf{E} . \rightarrow x(t)=-\frac{e}{m} \frac{E e^{-i \omega t}}{\omega_{0}^{2}-\omega^{2}-2 i \gamma \omega}
$$

Following the same procedure as before:

$$
\begin{equation*}
b=\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}} \frac{\omega^{2}}{\omega_{0}^{2}-\omega^{2}-2 i \gamma \omega}\left(\widehat{\mathbf{e}}_{\mathrm{in}} . \widehat{\mathbf{e}}_{\mathrm{sc}}\right) \tag{1}
\end{equation*}
$$

Similar to the full quantum calculation.

- $\operatorname{FWHM}=2 \gamma$
- lifetime $1 / \gamma(\Delta E . \Delta \tau \simeq \hbar)$
- For a typical natural width $\approx 1 \mathrm{eV} \rightarrow \mathrm{fs}\left(10^{-15} \mathrm{~s}\right)$

Example: Ion Solvation via Neutron Scattering

With different species in a solution:

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\Sigma_{\alpha} \Sigma_{\beta} b_{\alpha} b_{\beta}\left\langle\Sigma_{r_{i(\alpha)}} \Sigma_{r_{j(\beta)}} \exp i \mathbf{k}\left(\mathbf{r}_{j(\beta)}-\mathbf{r}_{i(\alpha)}\right)\right\rangle \\
& =N\left[\Sigma_{\alpha} c_{\alpha} b_{\alpha}^{2}+\Sigma_{\alpha} \Sigma_{\beta} c_{\alpha} c_{\beta} b_{\alpha} b_{\beta}\left(S_{\alpha \beta}(k)-1\right)\right]
\end{aligned}
$$

with α and β different chemical species of concentration c_{α} and c_{β} and the first sum runs over their positions.
$S_{\alpha \beta}$ is the partial strcuture factor of α and β. It is related to the partial distribution function $g_{\alpha \beta}(r)$ via Fourier transform.

$$
g_{\alpha \beta}(r)=1+\frac{V}{2 \pi^{2} N r} \int d k\left(S_{\alpha \beta}-1\right) k \sin (k r)
$$

with $4 \pi \rho_{\beta} g_{\alpha \beta}(r) r^{2} d r$ being the probability of finding a β particle in a spherical shell of radius r and thickness $d r$, knowing that there is an α particle at origin.
\rightarrow The full collection of $S_{\alpha \beta}(k)$ contains in principle all information about the structure of the solution.

Ion Solvation via Neutron Scattering (II)

The way to separate out the different $S_{\alpha \beta}(k)$ is to use isotopic substitution.

N.T. Skipper and G.W. Neilson, J. Phys. Cond. Matt. 1 4141-4154 (1989).

Weaker binding when surface charge decreases.
$\frac{d \sigma}{d \Omega}=\sum_{j} \sum_{k} b_{j} b_{k} e^{i \mathbf{q} \cdot\left(\mathbf{r}_{\mathbf{j}}-\mathbf{r}_{\mathbf{k}}\right)} \rightarrow$ Absolute phase is lost.
It can be recovered provided using appropriate constraints and iterative reconstruction algorithms provided the sample is coherently illuminated.

Soleil, Cristal beamline

Real Space

J. Fienup Op; Lett. 327 (1978)

Reciprocal Space

Coherent and Incoherent Scattering (Neutrons)

No correlation between an atom's position and its isotope and/or spin state.
Random distribution of isotopes and spin states. $b_{i}=\langle b\rangle+\delta b_{i}$, where $\langle\delta b\rangle=0$.

$$
\begin{aligned}
\frac{d \sigma}{d \Omega}=\left|\sum_{j} b_{j} e^{i \boldsymbol{q} \cdot \mathbf{r}_{j}}\right|^{2} & =\sum_{i} \sum_{j}\left(\langle b\rangle+\delta b_{i}\right)\left(\langle b\rangle+\delta b_{j}\right) e^{i \mathbf{q} \cdot\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)} \\
& =\langle b\rangle^{2}\left|\sum_{j} e^{i \boldsymbol{q} \cdot r_{j}}\right|^{2}+N\left(\left\langle b^{2}\right\rangle-\langle b\rangle^{2}\right)
\end{aligned}
$$

$\left\langle\delta b_{i}\right\rangle=\left\langle\delta b_{j}\right\rangle\left\langle\delta b_{i}\right\rangle_{i \neq j}=0$
$\left\langle\delta b_{i} \delta b_{i}\right\rangle=\left\langle b^{2}\right\rangle-\langle b\rangle^{2}$ as $b=\langle b\rangle+\delta b_{i}$.

The coherent scattering length is the average and the incoherent scattering length the variance.
Strong incoherent scattering with H .

Magnetic scattering (of neutrons)

Dipolar interaction of the neutron spin with the magnetic field created by the unpaired electrons of the magnetic atoms. This field contains two terms, the spin part and the orbital part.

Class	Interaction	$\delta b(\mathrm{fm})$
I	Strong interaction	10.0
	Atomic magnetic dipole moment ${ }^{*}$	10.0
II	Spin-orbit (Schwinger)	0.1
	Foldy	0.1
	Neutron electric polarizability	0.05
	Intrinsic electrostatic	0.01
	Nuclear magnetic dipole moment*	0.005
III	Neutron electric dipole moment ${ }^{*}$	$\lesssim 10^{-8}$
	Neutron electric charge*	$\leq 10^{-10}$
	Weak interaction	$\sim 10^{-34}$

$$
V(\boldsymbol{r})=-\boldsymbol{\mu}_{n} \cdot \boldsymbol{B}=-g_{n} \mu_{N} \boldsymbol{\sigma} \cdot \boldsymbol{B}
$$

$\boldsymbol{\mu}$ magnetic moment of the electron; $\mu_{N}=e \hbar /\left(2 m_{p}\right)$ nuclear magnetic moment; $g_{n}=3,8260855$ Landé factor ; \boldsymbol{B} magnetic field produced by the atom.

$$
f=\frac{2 m}{\hbar} \boldsymbol{\mu} \cdot M_{\perp},
$$

M_{\perp} transverse part of the atomic magnetization (projection of \boldsymbol{M} in the plane \perp to \boldsymbol{q}.

Note: e^{-}also has a $1 / 2$ spin which can interact with the magnetic part of electromagnetic waves. One has $b_{m a g}=-i r_{e}\left(\hbar \omega / m_{e}-c^{2}\right)\left[\left(\widehat{\mathbf{e}}_{\mathrm{sc}}^{*} \cdot \overline{\overline{\mathbf{T}}}_{S} \cdot \widehat{\mathbf{e}}_{\mathrm{in}}\right) \cdot \mathbf{S}+\left(\widehat{\mathbf{e}}_{\mathrm{sc}}^{*} \cdot \overline{\overline{\mathbf{T}}}_{L} \cdot \widehat{\mathbf{e}}_{\mathrm{in}}\right) \cdot \mathbf{L}\right]$, where tensors $\overline{\bar{T}}_{S}, \overline{\overline{\mathbf{T}}}_{L}$ depend on scattering geometry. For 10 keV photons $\hbar \omega / m_{e}-c^{2}=10 / 511 \approx 0.02$ As only unpaired electrons contribute, magnetic scattering is ≈ 107 of Thomson scattering.

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=b^{2} \rho_{\mathrm{sub}}^{2} \int d z d z^{\prime} \int d \mathbf{r} d \mathbf{r}^{\prime} e^{i \mathbf{q}_{\|} \cdot\left(\mathbf{r}_{\|}-\mathbf{r}_{\|}^{\prime}\right)} e^{i q_{z} z} e^{i q_{z_{z}} z^{\prime}} \\
\frac{d \sigma}{d \Omega}=\frac{4 \pi^{2} A b^{2} \rho_{\text {sub }}^{2} \delta\left(\mathbf{q}_{\|}\right)}{q_{z}^{2}}
\end{gathered}
$$

with $\int d \mathbf{r}_{\|} e^{i \mathbf{q}_{\|} \mathbf{r}_{\|}}=4 \pi^{2} \delta\left(\mathbf{q}_{\|}\right)$,
$\mathbf{q}_{\|}$wave-vector transfer component in the surface plane, A illuminated area

$$
\text { Integrating over } \delta \Omega=d \theta_{\mathrm{sc}} d \psi=\left(2 / k_{0} q_{z}\right) d \mathbf{q}_{\|}
$$ and normalizing to the incident flux $\left(I_{0} / A \sin \theta_{\text {in }}\right)$

\rightarrow reflection coefficient:

$$
R=\frac{l}{l_{0}}=\frac{16 \pi^{2} b^{2} \rho_{\mathrm{sub}}^{2}}{q_{z}^{4}}=\frac{q_{c}^{4}}{16 q_{z}^{4}}
$$

Brewster angle 45°

Averaging over all possible orientations $\rightarrow 1 / Q^{4}$ Porod's law of Small Angle Scattering.

Refractive Index

X-rays \rightarrow Maxwell Equations:
Neutrons \rightarrow Schrödinger equation:

$$
\begin{aligned}
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial \mathbf{t}} \\
\nabla \times \mathbf{B} & =\mu_{0} \mathbf{j}+\mu_{0} \frac{\partial \mathbf{D}}{\partial \mathbf{t}} \\
\mathbf{D} & =\epsilon_{0} n^{2} \mathbf{E}=\epsilon_{0} \mathbf{E}+\mathbf{P}
\end{aligned}
$$

Polarization of the medium $\mathbf{P}=\rho_{e /} \mathbf{p}$

$$
n=1-\frac{\lambda^{2} r_{e}}{2 \pi} \rho_{e l} \approx 1-10^{-6}
$$

$$
n=1-\frac{\lambda^{2}}{2 \pi} \sum_{i} \rho_{i} b_{i}
$$

\rightarrow Optical description

$n=1-\delta-i \beta$
$\cos \theta_{1}=n \cos \theta_{2} \quad$ grazing angles of incidence!
$\theta_{2}=0$ for $\theta_{\text {in }} \leq \theta_{c}=\sqrt{2 \delta} \approx 10^{-3}$
Total external reflection.

Wave $\exp i\left(\omega t-k_{z} z\right) ; k_{z}=n \sin \theta$.
Penetration depth $1 /\left(2 \mathcal{I} m k_{z}\right)$ with

$$
\mathcal{I} m\left(k_{z}\right)=\frac{1}{\sqrt{2}} k_{0} \sqrt{\left[\left(\theta^{2}-2 \delta_{i}\right)^{2}+4 \beta^{2}\right]^{1 / 2}-\left(\theta^{2}-2 \delta\right)}
$$

Inelastic Scattering Spectroscopy

Exchange of energy between x-rays or neutrons and matter X-rays:

- Compton scattering.
- Absorption (\rightarrow (N)EXAFS).
- Photoelectric effect. Photoemission.
- Fluorescence.
- Anomalous scattering / Resonant scattering.
- Inelastic scattering / Raman scattering.

Neutrons:

- Inelastic scattering of neutrons.
Energy Wavelength Frequency

Compton scattering

Electron-photon collision

THE
PHYSICAL REVIEW

A QUANTUM THEORY OF THE SCATTERING OF X-RAYS BY LIGHT ELEMENTS

By Artiur h. Compton

Fig. 1 A

Fig. 1 B

Conservation of energy and momentum:

$$
\begin{aligned}
& \boldsymbol{p}_{\mathbf{1}}=\boldsymbol{p}_{\mathbf{2}}+\boldsymbol{p}_{\boldsymbol{e}} \\
& p_{e}^{2}=p_{1}^{2}+p_{2}^{2}-2 p_{1} \cdot p_{2} \cos \theta \\
& p_{1} c+m_{e} c^{2}=p_{2} c+\sqrt{m_{e}^{2} c^{4}+p_{e}^{2} c^{2}} \\
& \Delta \lambda=\frac{h}{m_{e} c}(1-\cos \theta)
\end{aligned}
$$

\rightarrow Electronic properties in condensed matter
\rightarrow Imaging

Absorption of a photon by an atom

- Energy transfered to an e^{-}which is excited to an empty upper state.
- Absorption varies as E^{-3} and Z^{4}.
- Leaves the atom in an excited state.
- Most frequently, the e^{-}will be expelled from the atom
\rightarrow Photoelectric effect
\rightarrow Fluorescence or non-radiative de-excitation (Auger).

Photoelectric Effect - Photoemission

SYNCHROTRON

Photoelectric effect, Einstein 1905

- Photon of energy $h \nu$ transfers energy and momentum to the system (atom, solid).
- For core levels of atoms, "chemical shifts" \rightarrow chemical environment. $K E=h \nu-\Delta E-e \phi$, "work function".
- In solids, energy and momentum transfered to electrons. Conservation of $\|$ component of momentum \rightarrow band structure if both kinetic energy and angle are measured (Angle Resolved Photoemission Spectroscopy, ARPES).
- Photoelectrons lose energy in matter (collisions with the electrons of the other atoms \rightarrow secondary electrons are produced. The probability of not suffering an inelastic collision after travelling a distance x in matter (solid, gases) is $\exp (-x / \lambda)$ where λ is the inelastic mean free path \rightarrow Varying the photon energy allows depth profiling.

Inelastic Mean Free Path (IMFP). M. P. Seah and W. A. Dench, Surface and Interface Analysis, VOL. 1, 2 (1979).

G. Assat et al. ACS

Energy Lett. 3, 2721 (2018)

Fluorescence is characteristic of the atom

Lifetime of excited states $\sim \mathrm{fs}$.
In 1 fs , the light travels $10^{-15} \times 3.10^{8}=300 \mathrm{~nm} \gg \lambda \rightarrow$ incoherent process.

Quantum Description: Fermi's Golden Rule

Transition probability from an initial state $|i\rangle$ to a final state $|f\rangle$ per unit time (second order):

$$
\left.w=\frac{2 \pi}{\hbar}\left|\langle f| \mathcal{H}_{i n t}\right| i\right\rangle+\left.\sum_{n} \frac{\langle f| \mathcal{H}_{\text {int }}|n\rangle\langle n| \mathcal{H}_{\text {int }}|i\rangle}{E_{i}-E_{n}}\right|^{2} \delta\left(E_{f}-E_{i}\right)
$$

$\left.\left.|i\rangle=|a, \boldsymbol{k} \lambda\rangle,|f\rangle=\left|b, \boldsymbol{k}^{\prime} \lambda^{\prime}\right\rangle, E_{i}=E_{a}+\hbar \omega_{k}\right\rangle, E_{i}=E_{a}+\hbar \omega_{k}\right\rangle$
$\mathcal{H}_{\text {int }}$ interaction Hamiltonian, $\langle f| W|i\rangle$ Transition matrix element.
First term: Thomson scattering, non-resonant magnetic scattering.
Second term: Anomalous scattering, resonant magnetic scattering.

$$
\mathcal{H}_{i n t}=\sum_{i=1}^{N} \frac{e}{m} \boldsymbol{A}\left(\boldsymbol{r}_{i}\right) \cdot \boldsymbol{p}+\frac{e^{2}}{2 m} \boldsymbol{A}^{2}\left(\boldsymbol{r}_{i}\right)+\ldots
$$

\boldsymbol{A} vector potential.

$$
\boldsymbol{A} \propto a \exp (i \mathbf{k} . \mathbf{r})+a^{\dagger} \exp (-i \mathbf{k} . \mathbf{r})
$$

Creation and annihilation of photons.

EXAFS and NEXAFS

SYNCHROTRON

$$
\frac{d^{2} \sigma}{d \Omega d E}=w \rho\left(E_{f}\right) / I_{0}
$$

$\rho\left(E_{f}\right)$ density of final states.
$\mathrm{CsNi}\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$, Ni K edge
V. Briois et al., Actualité Chimique 3,

31 (2000)

Empty states

- Pre-edge: first empty levels.

NEXAFS: Near Edge X-ray Absorption Fine Structure (\equiv XANES: X-ray Absorption Near Edge Structure)

- Local environment and electronic structure

EXAFS: Extended X-Ray Absorption Fine Structure ($h \nu-E \gtrsim 50 e V$)

- The wave corresponding to the photoelectron is diffracted by neighboring atoms \rightarrow local structure.
- $k=\sqrt{2 m / \hbar^{2} \times\left(E-E_{0}\right)}$
- $\chi(k)=\sum_{j} \frac{N_{j} f_{j}(k) \exp \left(-2 k^{2} \sigma_{j}^{2}\right)}{k R_{j}^{2}} \sin \left(2 k R_{j}+\delta_{j}(k)\right)$

Resonant Inelastic X-ray Scattering (RIXS)

$$
\left.w=\frac{2 \pi}{\hbar}\left|\langle f| \mathcal{H}_{i n t}\right| i\right\rangle+\left.\sum_{n} \frac{\langle f| \mathcal{H}_{i n t}|n\rangle\langle n| \mathcal{H}_{i n t}|i\rangle}{E_{i}-E_{n}}\right|^{2} \delta\left(E_{f}-E_{i}\right)
$$

- Resonant process if E_{n} energy level of the system.
- Conservation of energy and momentum \rightarrow excitations can be investigated.
- X-rays with $\mathrm{p}=\mathrm{E} / \mathrm{c}$ carry much more momentum than visible photons or neutrons with $p=\sqrt{2 m E}$ \rightarrow wide range of momentum transfer possible.
- Element and orbital specific.
- Bulk sensitive.
- Good energy resolution as it is not affected by the core level short lifetime.

E. Pavarini, E. Koch, J. van den Brink, and G. Sawatzky (eds.) Quantum Materials: Experiments and Theory Modeling and Simulation Vol. 6,
Forschungszentrum Jülich, 2016

Neutron Spin-Echo (Mezei, 1972)

Energy of neutrons can be measured by analyzer crystals in "Triple axis" instruments as x-rays or time-of-flight and spin-echo.

www.nmi3.eu

- Polarized neutrons. Spins precess around magnetic fields with the Larmor frequency: $\frac{d \mathbf{s}}{d t}=\gamma \mathbf{s} \times \mathbf{B}$.
- $\omega_{L}=\gamma B=\left(g_{n} \mu_{N} / \hbar\right) B=-3.826\left(e / 2 m_{p}\right) B=183.3 \times 10^{6} B(T)$.
- For elastic scattering, precession after scattering cancels precession before scattering.
- If the neutron changes energy, the precession phases will be different.
- $\phi=\omega_{L} t=\gamma B d / v ; \delta \phi=\omega_{L} t \approx \gamma B d \delta v / v^{2} \approx \gamma B d \hbar \omega /\left(m v^{3}\right)$.
- 100 s of $n s \rightarrow$ investigation of slow dynamics, e.g. in soft matter. Equivalently, highest energy resolution (neV).

Thank you!

Questions? jean.daillant@synchrotron-soleil.fr

