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 Condition: Slit width comparable to the wave length of the incident wave

Single slit Double slit

• Diffraction refers to the apparent bending of waves around small objects and the 
spreading out of waves past small apertures.

• Double-slit: interference pattern

What happens to a plane wave that hits a slit?

Constructive 
interference

Destructive 
interference
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Diffraction by Crystalline Solids

In our context, diffraction is the elastic scattering of a coherent 
wave by the atoms in a crystal. 
A diffraction pattern results from interference of the scattered 
waves.

Crystalline materials = long-range 3D periodic atomic arrays
Interatomic distances ~ 0.5 – 2.5 Å

Waves of comparable wavelengths will be diffracted:
• X-rays = EM radiation, λ ~ 0.1 – 100 Å
• Neutrons
• Electrons

 X-rays, neutrons and electrons are diffracted by crystals

 X-ray, neutron and electron diffraction patterns contain
information about 3D arrangement of atoms in crystals

λ=h/mv

4



What is a crystal?

A:  Crystals are powerful tools that have the ability to energize, soothe, cleanse, 
heal, transform, and inform the energy fields they come into contact with.

Acta Cryst. (1992), A48, 928

 Reciprocity

C:  A crystal has essentially a sharp diffraction pattern

B:  A crystal is a solid where the atoms form a periodic arrangement
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Reciprocity
Cristal space = Direct space Diffraction space = Reciprocal space

FT

FT-1

Real space description (Bragg):
λ=2dhkl sinθ

Momentum (k) space description (von Laue):
𝑘𝑘 − 𝑘𝑘0 = 𝑑𝑑ℎ𝑘𝑘𝑘𝑘∗

Crystal Diffraction 
pattern

Reciprocal
lattice

Crystal 
structure

a

bc

Diffraction condition:

6



Motif,
atoms in 
Unit cell

*

Lattice

Crystal
Structure

=

convolution

Reciprocal
lattice

Diffraction 
pattern

=

FT

Structure 
factor

x

Ff
t.j

ar
  h

tt
p:

//
es

ch
er

.e
pf

l.c
h/

𝐶𝐶 ℎ = 𝐹𝐹𝐹𝐹 𝐶𝐶 𝑟𝑟 = 𝐹𝐹𝐹𝐹 𝐿𝐿 𝑟𝑟 ∗ 𝑀𝑀 𝑟𝑟
= 𝐿𝐿 ℎ × 𝐹𝐹 ℎ

product

𝐶𝐶 𝑟𝑟 = 𝐿𝐿 𝑟𝑟 ∗ 𝑀𝑀(𝑟𝑟)

FT

FT

Reciprocity
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 In which direction does scattering occurs?
 How strong is the scattering in a given direction?
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In which direction does scattering occurs?
Bragg’law: Simplistic, but usefull view of diffraction

• Atoms arranged in parallel planes in a crystal
• Incident X-rays reflected off the planes (specular)
• Peaks in diffraction patterns referred as « reflections »

(hkl)

(hkl)
hkl

Interplanar spacing, 
d-spacing

Miller indices

n=1, because nth order diffraction from (hkl) planes with d-spacing d can be treated as 
1st order diffraction from (nh,nk,nl) plane with spacing d/n

𝒏𝒏.𝝀𝝀 = 𝟐𝟐.𝒅𝒅𝒉𝒉𝒉𝒉𝒉𝒉. 𝐬𝐬𝐬𝐬𝐬𝐬(𝜽𝜽)
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Miller indices
Notation used for imaginary atomic planes in crystal, (hkl)

For each set of parallel planes:
• Take the plane closest to the one that passes through the origin
• Write down the intercepts with the crystallographic axes (as fraction of 

the unit cell edges): 1/h, 1/k, 1/l
• Take reciprocals of the factions to assign Miller indices, (hkl)

2D exemples

b
a

NaCl
(200) planes (220) planes

d200

3D exemples
(11) (10)

(13)

(21)

(41)-
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D-spacings and cell-parameters

NaCl
(200) planes

d200

D-spacing in crystals are related to the unit cell parameters a, b, c, α, β, γ
For orthogonal crystal systems:

Application:
-From know unit cell parameters, we can predict peak position
-From experimentatlly observed peak positions, we can determine unit cell parameters

1
𝑑𝑑ℎ𝑘𝑘𝑘𝑘²

=
ℎ²
𝑎𝑎𝑎

+
𝑘𝑘𝑘
𝑏𝑏𝑏

+
𝑙𝑙𝑙
𝑐𝑐𝑐

1
𝑑𝑑200²

=
2²
𝑎𝑎𝑎

+
0²
𝑏𝑏𝑏

+
0²
𝑐𝑐𝑐

𝑑𝑑200 =
𝑎𝑎𝑎
2²

=
𝑎𝑎
2

𝜆𝜆 = 2.𝑑𝑑200. sin(𝜃𝜃)

For λ=1,54Å, 2θ200= 31,7° a=5,64Å
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Reciprocal Lattice

RL vector: 𝑑𝑑ℎ𝑘𝑘𝑘𝑘∗ normal to (hkl) planes, with 𝑑𝑑ℎ𝑘𝑘𝑘𝑘∗ = 1
𝑑𝑑ℎ𝑘𝑘𝑘𝑘

𝑑𝑑ℎ𝑘𝑘𝑘𝑘∗

(hkl)

12www.xtal.iqfr.csic.es

http://www.xtal.iqfr.csic.es/Cristalografia/parte_04-en.html
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For a set of direct lattice vectors ai, reciprocal lattice vectors ai* are defined
by the conditions:

a

b b*

a*

Direct space Reciprocal space

(12)

d12
distance

(1,2) RL vector d*hk=ha*+kb*

(0,0)(0,0)

Reciprocal Lattice

RL vector: 𝑑𝑑ℎ𝑘𝑘𝑘𝑘∗ normal to (hkl) planes, with 𝑑𝑑ℎ𝑘𝑘𝑘𝑘∗ = 1
𝑑𝑑ℎ𝑘𝑘𝑘𝑘

𝑑𝑑ℎ𝑘𝑘𝑘𝑘∗
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Laue condition: Ewald construction

Bragg’s Law 𝜆𝜆 = 2.𝑑𝑑ℎ𝑘𝑘𝑘𝑘 . sin(𝜃𝜃)

1
𝑑𝑑ℎ𝑘𝑘𝑘𝑘

=
2
𝜆𝜆

sin(𝜃𝜃) 𝑑𝑑ℎ𝑘𝑘𝑘𝑘∗ =
2
𝜆𝜆

sin(𝜃𝜃)

𝑑𝑑ℎ𝑘𝑘𝑘𝑘∗ = 𝑘𝑘 − 𝑘𝑘0 Laue condition

The construction of EWALD sphere is a graphical
representation of the LAUE conditions:

(Wave-vector: k=1/λ)

Diffraction condition is satisfied when
a reciprocal lattice node intersects the 
Ewald sphere

sinθ/λ
θ
θ

θ

Limiting
sphere

Ewald sphere
r=1/λ

𝒌𝒌
𝒌𝒌𝟎𝟎

𝒅𝒅𝒉𝒉𝒉𝒉𝒉𝒉∗

𝒌𝒌𝟎𝟎

𝒌𝒌
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Ewald sphere (shell)

Shows the direction of each diffracted beam:
- crystal in a random orientation may not give any diffraction

Laue image

Shows which reflections are observable for a given wavelength:  limiting sphere
Only reciprocal lattice points which lie within the limiting sphere will be observed

- use of polychromatic radiation: Laue
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Single crystal vs             powder
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X-rays

106 μm3

hkl, I

© L.B. McCuster, ETH Zurich

Single crystal diffraction
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X-rays

1 μm3

© L.B. McCuster, ETH Zurich

Powder diffraction
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X-rays

© L.B. McCuster, ETH Zurich

Powder diffraction
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X-rays

© L.B. McCuster, ETH Zurich

Powder diffraction
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X-rays

© L.B. McCuster, ETH Zurich

Powder diffraction
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X-rays

© L.B. McCuster, ETH Zurich

Powder diffraction
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X-rays

© L.B. McCuster, ETH Zurich

Powder diffraction
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X-rays

© L.B. McCuster, ETH Zurich

Powder diffraction
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X-rays

© L.B. McCuster, ETH Zurich

Powder diffraction
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X-rays

© @L.B. McCuster, ETH Zurich

Powder diffraction
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X-rays
2θ

© L.B. McCuster, ETH Zurich

Orientation is lost: 
3D1D

Azimutal integration

2θ

In
te

ns
ityPowder diffraction
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X-rays

Reflection Overlap Problem

© L.B. McCuster, ETH Zurich

Powder diffraction
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Single crystal vs               Powder
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How strong is the scattering in a given direction?

Motif, 
atoms in Unit cell

FT Structure 
factor

F(hkl)

𝐹𝐹ℎ𝑘𝑘𝑘𝑘 = 𝐹𝐹𝐹𝐹 𝑀𝑀 𝑟𝑟𝑀𝑀 𝑟𝑟

Unit cell * individual atoms * thermal motion

𝐹𝐹ℎ𝑘𝑘𝑘𝑘 = �
𝑗𝑗⊂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑗𝑗𝑇𝑇𝑗𝑗 𝑒𝑒−2𝜋𝜋𝑖𝑖(ℎ𝑥𝑥𝑗𝑗+𝑘𝑘𝑘𝑘𝑗𝑗+𝑙𝑙𝑙𝑙𝑗𝑗)

Property of the atom
 Information about atom types

Structure property of the unit cell
 Information about atomic positions

𝐹𝐹ℎ𝑘𝑘𝑘𝑘~ Collective scattering power of the atoms in the unit cell



The structure factor

Atomic scattering factor of atom j with 
atomic fractional coordinate (xj, yj, zj). 
FT of its scattering density:

𝐹𝐹ℎ𝑘𝑘𝑘𝑘 = �
𝑗𝑗⊂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑗𝑗𝑇𝑇𝑗𝑗 𝑒𝑒−2𝜋𝜋𝑖𝑖(ℎ𝑥𝑥𝑗𝑗+𝑘𝑘𝑘𝑘𝑗𝑗+𝑙𝑙𝑙𝑙𝑗𝑗)

-for X-rays: 𝑓𝑓𝑗𝑗 = fj(Q) atomic form factor



The structure factor

Atomic scattering factor of atom j with 
atomic fractional coordinate (xj, yj, zj). 
FT of its scattering density:

-for X-rays: 𝑓𝑓𝑗𝑗 = fj(Q) atomic form factor

𝐹𝐹ℎ𝑘𝑘𝑘𝑘 = �
𝑗𝑗⊂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑗𝑗𝑇𝑇𝑗𝑗 𝑒𝑒−2𝜋𝜋𝑖𝑖(ℎ𝑥𝑥𝑗𝑗+𝑘𝑘𝑘𝑘𝑗𝑗+𝑙𝑙𝑙𝑙𝑗𝑗)

Q = 4π sin(θ)/λthe broader the distribution of the scatterer in real 
space, the narrower the distribution in Q; i.e., the 
faster the decay of the form factor 

-for Neutrons:

Magnetic 𝑓𝑓𝑗𝑗 = ½ 𝛾𝛾𝑟𝑟𝑒𝑒𝑓𝑓𝑚𝑚(𝑄𝑄)(𝑀𝑀⊥ ∙ 𝑆𝑆 ) 

Nuclear 𝑓𝑓𝑗𝑗 = bi , fermi length



Atomic Displacement Parameter

𝐹𝐹ℎ𝑘𝑘𝑘𝑘 = �
𝑗𝑗⊂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑗𝑗𝑇𝑇𝑗𝑗 𝑒𝑒−2𝜋𝜋𝑖𝑖(ℎ𝑥𝑥𝑗𝑗+𝑘𝑘𝑘𝑘𝑗𝑗+𝑙𝑙𝑙𝑙𝑗𝑗)

Historically called Temperature factor or Debye–Waller factor describe the 
attenuation of scattering caused by atomic displacements (thermal, static).

In the approximation of an isotropic harmonic 

oscillator: 𝑇𝑇𝑗𝑗= 𝑒𝑒−𝐵𝐵𝑗𝑗
sin 𝜃𝜃
𝜆𝜆

2

With  𝐵𝐵𝑗𝑗 = 8𝜋𝜋2� �𝑢𝑢𝑗𝑗2 with units of Å2

𝑢𝑢𝑗𝑗2 is the mean squared displacement of 
atom j

The structure factor

𝑢𝑢𝑗𝑗2 = 0 Å2

0.002

0.005

0.01

0.02



How strong is the scattering in a given direction?

The diffracted intensity Ihkl is the quantity accessible to measurement in a 
diffraction experiment (proportional to the number of diffracted particles arriving
in the detector)

In the kinematic approximation (we neglect the double diffraction), we have:

2.. hklhklhkl FCSI =

S : scale factor
Chkl: experimental corrective term

instrument (Lorentz, polarization, slit effects...)
sample (multiplicity, absorption, preferential orientation, extinction...)

Fhkl: structure factor, complexe number  the phase of F is not measured

34



http://www.ysbl.york.ac.uk/~cowtan/sfapplet/sftut2.html
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The phase problem

In diffraction experiments, we collect only the diffraction magnitudes, and not the 
phases. Unfortunately the phases contain the bulk of the structural information!

 Use symmetry to reduce the problem
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Magnitudes from the Cat 
transform and the phases 
from the Duck transform

magnitudes

FT
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FT-1
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Effects of symmetry on diffraction

Friedel’s law: 
𝐹𝐹 ℎ𝑘𝑘𝑙𝑙 = 𝐹𝐹∗ ℎ𝑘𝑘𝑘𝑘 where 𝐹𝐹∗ ℎ𝑘𝑘𝑘𝑘 is the complex conjugate of 𝐹𝐹(ℎ𝑘𝑘𝑘𝑘).
 The squared amplitude is centrosymmetric :  𝐹𝐹 ℎ𝑘𝑘𝑘𝑘 2 = 𝐹𝐹(ℎ𝑘𝑘𝑙𝑙) ²

Point symmetry:
Point group symmetry operations of the crystal are reflected in the diffraction pattern

Symmetry of the diffraction pattern: Laue-group
point symmetry of the crystal + a center of symmetry

It is not possible to tell from the symetry of 
the diffraction pattern whether or not the 
crystal has a center of symmetry. The 
information is buried in the intensity 
distribution of the diffraction pattern.
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Systematic absences

Translational symmetry operations that have the effect of making 
some structure factors have zero value in a systematic way

Exemple:

© Michel Evain

• Non-primitive lattice
• Screw axes and glide planes
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Systematic absences

Translational symmetry operations that have the effect of making
some structure factors have zero value in a systematic way

Exemple:

Centered 
cell

© Michel Evain

• Non-primitive lattice
• Screw axes and glide planes
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Systematic absences

Translational symmetry operations that have the effect of making
some structure factors have zero value in a systematic way

• Non-primitive lattice
• Screw axes and glide planes

 Used to identify the symmetry elements with translation and select the space group

Exemple:

C centered 
cell

Systematic 
absence for
h+k=2n+1 

40



Determination of crystal structure
Several method exist to overcome the phase problem

The charge flipping algorithm
Oszlanyi & Süto, Acta Cryst. 2004, 2005
This algorithm is based on a simple property: the electron density
is always positive.

1.Calculate the inverse Fourier transform of the structure factors.
The resulting electron density ρ(x) has positive and negative peaks
due to the wrong phases.

2.The negative peaks (up to a small limit δ) are set positive
(charge flipping) and a new electron density function is
established.

3.The Fourier transform of this new density is calculated.

4.The phases of the new structure factors are kept but the
amplitudes of the structure factors are replaced by the
experimental ones.

This procedure continues in a loop with step 1 to 4 until a
converging solution is found.

Charge flipping App : Nicolas Schoeni and Gervais Chapuis
École Polytechnique Fédérale de Lausanne, Switzerland 

Exemple: 

Random (or zero) 
phases on 
experimental data

41
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Refinement of the crystal structure

• The crystal structure deduced using direct methods can be refined by adjusting 
the atomic fractional coordinates and atomic displacement parameters to give 
best agreement between measured and calculated structure factors.

• Least-square refinement
The most common approach is to minimize the function: 

y is the intensity of an observed reflections, yc is the value calculated from the 
structural model for the same reflection, and w is an assigned weight usually 
representing the estimate of the precision of the measured quantity (wi=1/yi )

-For single crystal:  yi= Ihkl = │Fhkl│²

-For powder: 1D projection of the 3D reciprocal space, Bragg 
peaks with similar d’s overlap

𝜒𝜒2 = �
𝑖𝑖

𝑤𝑤𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖)²
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Refinement of a powder diffraction diagram
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yi is the intensity of the signal in the detector for each measured angle not Ihkl
 how to extract Ihkl from the diffraction diagram ? 

𝜒𝜒2 = �
𝑖𝑖

𝑤𝑤𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖)²

43



Decomposition of the diagram

With hk(x) Peak profile

 Need to model the Profile (shape and width) of a Bragg Reflection for Extracting 
Intensities

Variable x: 2θ, TOF, energy

44



Profile of a Bragg Reflection

© Nathalie Audebrand

Dirac peak
Instrument 
(diffractometer 
setup + wavelength 
dispersion)

Instrumental peak g

Microstrains
effect

Particles size 
effects

Sample
(microstructural 
features)

Observed peak h

Intrinsic peak f

f = f strain * f size

f strain
f size
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Sample line profile broadening

• Size effect

incomplete destructive interference 
at θBragg ±Δθ for a finite (limited) 
number of lattice planes

Ex: ZnO (CuKα1)

Lorentzian broadening

• Strain effect

Distribution of deformations
d0±Δd=d0(1±ε)

 Overlap of diffraction profiles

46



Profile modelisation: shape and width

The Cagliotti law Pseudo-Voigt 

The profile function is characterized by its 
Full Width at Half Maximum: H

𝑝𝑝𝑝𝑝 𝑥𝑥 = 𝜂𝜂. 𝐿𝐿 𝑥𝑥 + 1 − 𝜂𝜂 .𝐺𝐺(𝑥𝑥)

Angular dependence of HG and HL components

Shape Width

47
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Rietveld refinement: a global refinement of the powder 
diagram with structural model 

« A profile refinement method for nuclear and magnetic structures »
Rietveld, H.M., 1969. J. Appl. Crystallogr., 2, 65-71

yci calculated intensity at pattern point i
ybi background intensity at pattern point i
Φ index for sample phases 
k index for reflections contributing to point i
SΦ scale factor for phase Φ 
jk multiplicity of reflection k 
Lpk Lorentz (polarisation) factor for reflection k 
Ok preferred orientation correction for reflection k 
M absorption correction 
|F Φ k| structure factor modulus for reflection k of 
phase Φ 
Ωik profile function for reflection k of phase Φ 
calculated at pattern point i

48



©R. Dinnebier
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Phase identification

Phase quantification

Structure determination

Particle size

Particle strain

Type of studies:

Phase transition, cinetic

Polymorphism

Ionic migration

Thermal expansion ….

Crystallisation/amorphisation

Microstructure

50



X-ray vs Neutron diffraction

X-Rays Neutrons

Nature Electromagnetic wave Particle wave
No mass, spin 1, no magnetic dipole 
moment

Mass, spin ½, Magnetic dipole moment

Scattered by Electron cloud Nuclei and magnetic moments of 
unpaired electrons

Scattering power ~ Z independent

Q-dependence of scattering yes Nuclear: f is constant Magnetic: yes, 
strong

Resolution δd/d Ultra-high (~10-4) Medium (10-2), High (10-3)
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X-ray vs Neutron : Scattering power

• X-ray: 
Atomic scattering factor
 Large scattering power,  ~Z 

• Neutron: 
Coherent scattering length
 Low scattering power, 
independent of Z
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X-ray vs Neutron : sample quantity

X-ray 
capillary

Neutron 
vanadium can

Neutron: low neutron flux, low scattering power
 Large sample, typically few grams
 Typical acquisition time: few minutes for high flux 

to few hours for high resolution

X-ray: high brilliance, high scattering 
power
 Tiny samples

53



H   -0.374

D   0.667

Cr

Cr       0.3635

Mn     -0.373

Fe       0.954

Co       0.253

Ni       1.03
58Ni      1.44
60Ni      0.28
62Ni     -0.87

Cr

X-ray vs Neutron: Scattering power

Neutron: contrast, light elements 54



Example: site-preference occupancy in (Nd-
Ce)2(Fe-Co)14B hard permanent magnets

D2B@ILL

Fe/Co and Nd/Ce contrast allowed by neutron diffraction  site-preference 
magneto-crystalline anisotropy 

55
Colin, C. V. et al. Appl. Phys. Lett. 108, 242415 (2016)



X-ray vs Neutron: Magnetic structures

k=[0 0 0]k=[0 0 0]

CaMnGe2O6
Magnetoelectric
Antiferromagnetic 
Structure

Te
m

pe
ra

tu
re

 (K
)

Exemple: Magnetic structure of CaMnGe2O6 magneto-electric pyroxene

56

Ding, L. et al. Phys. Rev. B 93, 064423 (2016).



X-Ray vs Neutron: Absorption

Pe
ne

tr
at
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n 

de
pt

h

Atomic number
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X-ray vs Neutron: Sample environment

©F. Porcher @LLB
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MgH2

Mg

Exemple: Coupled H2 Desorption Measurement, in-situ NPD

MgH2Mg + H2

T= 350 °C, P = 200 mb

©CRG-D1B@ILL
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X-Ray vs Neutron: Q-dependence

D2B, ILLCrystal, Soleil

 Better determination of Atomic Displacement Parameters (adp)  by neutrons 60



X-ray vs Neutron: resolution

Comparison on a standard compound: Na2Al2Ca3F14
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Resolution function

Obvious advantages of the synchrotron X-rays for:
-Unambiguous indexing
-Evaluation of the sample-related broadening effects

X-ray vs Neutron: resolution
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Neutron vs X-Ray diffraction

• Bulk
• Light elements
• Contrast (H/D, 

neighboring elements)
• Magnetic structures

• (Extremely) brilliant 
source,  small sample

• (Very) high resolution
• (Very) small volume 

probed
• High availability (lab sources)

• Low availability
• Small flux, large 

sample
• Low resolution

Neutrons X-Rays/synchrotron

• Neighbors and isotopes 
cannot be discriminated

• Light elements hard to 
detect

• Small volume probed 
(representative of your sample?)

63
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X-Ray  AND Neutron: joint refinement

D2B, ILL

Crystal, Soleil

Na

Y
Co

W

NaYCoWO6
Doubly ordered perovskite 

with polar structure P21 
pseudo-tetragonal

Combine the best of 
X-ray: resolution  indexation, lattice parameters
Neutron: sensitive to light elements: oxygen positions, oxygen octahedral distortion 64

Zuo, P. et al Inorg. Chem. 56, 8478–8489 (2017).



Thank you!

65


	Diapositive numéro 1
	Diapositive numéro 2
	What happens to a plane wave that hits a slit?
	Diffraction by Crystalline Solids
	What is a crystal?
	Reciprocity
	Diapositive numéro 7
	Diapositive numéro 8
	Diapositive numéro 9
	Miller indices
	D-spacings and cell-parameters
	Diapositive numéro 12
	Diapositive numéro 13
	Laue condition: Ewald construction
	Ewald sphere (shell)
	Single crystal             vs             powder
	Diapositive numéro 17
	Diapositive numéro 18
	Diapositive numéro 19
	Diapositive numéro 20
	Diapositive numéro 21
	Diapositive numéro 22
	Diapositive numéro 23
	Diapositive numéro 24
	Diapositive numéro 25
	Diapositive numéro 26
	Diapositive numéro 27
	Diapositive numéro 28
	Single crystal                  vs               Powder
	Diapositive numéro 30
	Diapositive numéro 31
	Diapositive numéro 32
	Diapositive numéro 33
	Diapositive numéro 34
	http://www.ysbl.york.ac.uk/~cowtan/sfapplet/sftut2.html
	The phase problem
	Effects of symmetry on diffraction
	Systematic absences
	Systematic absences
	Systematic absences
	Determination of crystal structure
	Refinement of the crystal structure
	Refinement of a powder diffraction diagram
	Decomposition of the diagram
	Profile of a Bragg Reflection
	Sample line profile broadening
	Profile modelisation: shape and width
	Diapositive numéro 48
	Diapositive numéro 49
	Diapositive numéro 50
	X-ray vs Neutron diffraction
	X-ray vs Neutron : Scattering power
	Diapositive numéro 53
	Diapositive numéro 54
	Example: site-preference occupancy in (Nd-Ce)2(Fe-Co)14B hard permanent magnets�
	X-ray vs Neutron: Magnetic structures
	X-Ray vs Neutron: Absorption
	Diapositive numéro 58
	Diapositive numéro 59
	X-Ray vs Neutron: Q-dependence
	Diapositive numéro 61
	Diapositive numéro 62
	Diapositive numéro 63
	X-Ray  AND  Neutron: joint refinement
	Thank you!

