

Ē

Joint French-Swedish school on X-rays and Neutrons techniques for the study of functional materials for energy

13-17 May 2019 Lund (Sweden)

Materials for Batteries

Gwenaëlle ROUSSE

Chimie du Solide et de l'Energie, Collège de France-Sorbonne Université, Paris

Outline of the course

Introduction to Li-ion batteries: fondamentals

I. Trends in positive electrode materials for Li-ion

 a) Polyanionic compounds: classical redox
 b) Rocksalt-based derivatives: anionic redox

II. Beyond Li-ion batteries

- a) Solid state batteries
- b) Na-ion batteries

Today's energy overview

Electrochemical energy storage

Li-ion batteries: versatility and high energy density

Bright future of Li-ion batteries

Research boosted by business

EVs Dominate Demand for Lithium-Ion Batteries

Estimated global demand by product, in gigawatt-hours

Sources: Avicenne; BNEF; Current Analysis; Bloomberg reporting

2025: 9% EV's (Bloomberg) 100 \$/kWh, 700 Wh/L, 350 Wh/kg

Li-ion battery: How does it work on charge ?

Li-ion battery: How does it work on discharge ?

Li-ion battery: How does it work?

Outline of the course

Introduction to Li-ion batteries: fondamentals

I. Trends in positive electrode materials for Li-ion

 a) Polyanionic compounds: classical redox
 b) Rocksalt-based derivatives: anionic redox

II. Beyond Li-ion batteries

- a) Solid state batteries
- b) Na-ion batteries

Electrode materials for Li-ion batteries

Li-ion batteries : strategy for new compounds

New compounds = new structures to determine

Single crystals XRD: method of choice....

Powder: (hkl) reflections overlap

Difficult structural determination

Powders are sometimes the only option

New compounds = new structures to determine

New compounds = new structures to determine

Ab initio structural determination, simulated annealing, & direct methods, Fourier maps, charge flipping ...

> X-Ray and neutron scattering techniques

from LiFePO₄ to the sulfate wealth

Nature Materials **2010**, 9, 68–74. Nature Materials **2011**, 10, (10), 772-779.

From polyanionic compounds to high energy density layered oxides

Polyanionic based compounds

Tavorite LiVPO₄F, LiFeSO₄F

& Borates, Silicates... Masquelier, Croguennec, Chemical Reviews 2013,

113.6552.

Moderate voltage & capacity Stable structural framework on cycling

Layered-type compounds

NMC, $LiCo_x M_{1-x}O_2$

Li-rich NMC, Li₂MO₃ M=3d, 4d... metals

4.0-4.5 V vs. Li+/Li⁰

Derivatives from the rocksalt structure

Li₃NbO₄ Yabuuchi, N. et al. *PNAS* 2015, *112* (25), 7650. and *Chem of Mater* 2016.

Li₄Mn₂O₅

Freire, M.; ... Pralong, V. A *Nature Materials* **2015**, *15* (2), 173

Large capacity & high voltage but stability on cycling not yet fully mastered

From polyanionic compounds to high energy density layered oxides

LiCoO₂ has been the "stellar" material for numerous years

The Li_xCoO₂ electrode: evolution in the last 25 years

Origin of exacerbated capacity

$Li[Li_{0.2}Mn_{0.53}Co_{0.14}Ni_{0.13}]O_{2}$

	¬ [O redev centere] ¬																
Н		[3 redox centers]															Не
Li	Ве													Ν	0	F	Ne
Na	Mg	Лg												Ρ	S	CI	Ar
κ	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Хе
Cs	Ва	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn

[1 redox center]

 $Li_2[Ru_{1-x}Sn_x]O_3$

 Li_2IrO_3

Electron Paramagnetic Resonance Hard X-Ray Photoelectron Spectroscopy

Anionic redox : $2 O^{2-} \leftrightarrow O_2^{2-} + 2 e^{-}$ Structural signature of oxygen redox?

Structural changes on cycling ?

(hkl) dependent profiles \rightarrow stacking faults

Structural description

Diffax → **FAULTS**, an accessible program for refining powder diffraction patterns of defective layered structures

Montse Casas-Cabanas, Juan Rodríguez-Carvajal

No cell No space group

Superposition of layers stacked with a certain probability

Example 1: the layered compound Li₂Fe_{0.5}Sb_{0.5}O₃

Is this model reflecting reality ???

McCalla, Rousse.., Chemistry of Materials, 2015

Example 2: Li₂IrO₃: (O-O) dimers

Use of the HRPT neutron diffractometer at PSI-SINQ

E. McCalla, A. Abakumov, G. Rousse, M.L. Doublet and J.M. Tarascon, Science; 2015

Trends on electrode materials for Li-ion batteries

Anionic oxygen redox in 2D and 3D compounds

NMC compounds ?

Cobalt: costly and ethical issues: from NMC 333 to 622, 811...

How to apply in **Li-rich NMC** that in addition suffer from cationic migrations, O_2 release ?

Outline of the course

Introduction to Li-ion batteries: fondamentals

I. Trends in positive electrode materials for Li-ion

 a) Polyanionic compounds: classical redox
 b) Rocksalt-based derivatives: anionic redox

II. Beyond Li-ion batteries

- a) Solid state batteries
- b) Na-ion batteries

a) All-solid-state batteries Recent revival : industrial rush announcements

Emergence of all-solid-state batteries

Emergence of all-solid-state batteries

Solid Electrolyte is SAFE!!!

✓ enables 1) the use of Li at the anode ⇒Voltage \uparrow => energy density \uparrow

2) faster charging times

Challenges in all-solid-state batteries

Solid electrolyte as conductive as liquid ionic conductors ?

Ionic conductors

High conducting materials = high structural disorder " What kind of disorder ?

- \checkmark HT phases (high symmetry, disordered)
- ✓ Heterovalent substitution

 $Li_{10}GeP_2S_{12}$ $\sigma_{\rm RT} = 1.2 \times 10^{-2} \, {\rm S} \cdot {\rm cm}^{-1}$

b) The Na-ion technology: an alternative for cost and sustainability reasons.

Blooming research on Na insertion electrodes over the last 5 years

Demonstrated prototype : Polyanionic Na₃V₂(PO₄)₂F₃ (NVPF) // 1M 1M NaPF₆-PC // hard carbon

specific energy > 370 Wh kg⁻¹

Comparison with other technologies in terms of powder and energy density

Solutions to be found via an european project that is under construction http://battery2030.eu/

