

ESSNUSB, WP02 UPDATE

Mamad Eshraqi, Björn Gålnander

2019 June 11

Note the new labels for different pulsing schemes. "A" is the baseline

Scenario	Α	В	С
Sub-pulse length (ms)	0.65	~1.3*	0.77
Beam current [#] (mA)	60	~30	50
Frequency (Hz)	14	70	70
Time between pulses (ms)	72 (0.75)	14	14
Particles per batch	2.23 ·10 ¹⁴	2.23 ·10 ¹⁴	2.23 ·10 ¹⁴
Batches per macro pulse	4	4	4
Particles per macro pulse (72 ms /14 Hz)	8.93 ·10 ¹⁴	8.93 ·10 ¹⁴	8.93 ·10 ¹⁴

 Started collaboration with RAL and SNS on developments on their existing sources to make them meet the ESSnuSB needs

Parameter	RAL	RAL	SNS, Oak Ridge,	
	Penning IX	Penning 2X	RF surface enhanced	
	ISIS	FETS	volume source	
Beam pulse length (ms)	0.25 ms	2 ms	l ms	
Repetition frequency	50 Hz	50 Hz	60 Hz	
Beam current	55 mA	100 mA	60 mA	
Duty cycle	1.25 %	10 %	6 %	
Lifetime	5 weeks	2 weeks	14 weeks	
Cs consumption	~0.7 g/week	~3.5 g/week	~2 mg/week	
Emittance rms norm	0.25 mm mrad	0.3 mm mrad	0.25 mm mrad	
LEBT	Sector magnet 90 degrees bend plus Cs	Einzel lens,Electrostatic LEBcarbon Cs trap		
Emittance rms norm after inital beam transport stage	0.7 mm mrad	0.3 mm mrad	N/A	
Extraction voltage	18 (35) kV	18 (65) kV	65 kV	

• Possibility of merging the two beams at 70 Hz (cases B and C).

- B field: 0.1 T
- Bending radius: 400 mm
 - pole gap: 100 mm
- A coil with 100 turns
 - Inductance: I7 mH (possible to switch at 70 Hz)
- Power supply:
 - Current: 80 A
 - Voltage: I 70 V

6

- Two different power upgrades for the modulators have been studied:
 - Using the SML modulators of ESS and upgrading the capacitor chargers
 - Using the SML modulators of ESS and adding pulse transformers for the H- beam

Max Collins and Carlos Martins

7

Scenario	Solution	Eta	Investme nt cost [M€]	Electricity cost per year	Increased system footprint	Total system height	H⁻ pulse rise time [µs]
A	SML upgr.	0.82	13.4	14.6	0	3.1	< 120
B	SML upgr.	> 0.80	13.4	14.8	0	3.1	< 80
	SML + PT	> 0.80	26.3	14.8	< 2.5 x 1.5	2.4	60-120
С	SML upgr.	> 0.71	13.4	16.7	0	3.1	< 170
	SML + PT	> 0.72	26.6	16.5	< 2.5 x 1.5	2.4	50-120
Baseline	SML	0.82	N/A	7.30	N/A	2.6	N/A

- Design the linac from 2 GeV to 2.5 GeV
- Study the optics and H- stripping phenomena to make sure the losses are limited
- Study the requirement on field regulation for the H- beam such that the total losses do not exceed I W/m
- Updating the drawings on site with the depth.

EUROPEAN SPALLATION SOURCE

THANKS!

|0|