

WU3 IPMI EPICS Integration

Piotr Perek

MTCA Management

WU3 Scope

Assumptions and Ideas

Progress report

Department of Microelectronics and Computer Science

WU3 - IPMI EPICS Integration

Piotr Perek

Department of Microelectronics and Computer Science Lodz University of Technology, Poland

Rzeszów, 26 June 2019

MTCA Management

WU3 Scope

WU3 IPMI EPICS Integration

Piotr Perek

MTCA Management

WU3 Scope

Assumptions and Ideas

Progress report

- Interface to read/write and monitor the MTCA system using EPICS
- Develop this into a scalable module that can be used for any number of MTCA modules
- Design this module in accordance to the ESS guidelines and to other designers in order to keep some level of homogeneity

Functionality

WU3 IPMI EPICS Integration

Piotr Perek

MTCA Management

WU3 Scope

Assumptions and Ideas

Progress report

Department of Microelectronics and Computer Science

4/14

- Getting field replaceable unit (MCH, PM, CU, AMCs, backplane) info and device ID (could also be used for inventory purposes)
- Getting activation (hot-swap) states
- Getting sensor data record, sensor reading (including reading factors and hot swap handle) and provide human readable values
- Getting sensor thresholds
- Getting link capability and link status
- Setting activation (hot-swap) states (shutdown/remove or activate) FRU
- Setting sensor thresholds
- Receiving events (to be defined)
- Firmware remote update

Assumptions

WU3 IPMI EPICS Integration

Piotr Perek

MTCA Management

WU3 Scope

Assumptions and Ideas

Progress report

- We are providing the monitoring/control system for single MTCA chassis
 - (1 chassis 1 EPICS IOC)
- Complete EPICS monitoring system for the machine is out of scope of this contract
- Scalability running separate EPICS IOC for every MTCA chassis in the accelerator
- Software should be fully compliant with NAT MCH it will be used for development and tests
- Supported MicroTCA chassis types: 12 AMC (9U) and 6 AMC (3U)
- Supported modules: CCT AM 900/412, MRF EVR-300U, IFC14xx, SIS8300-KU, RTM Carrier AMC

Initial Idea

WU3 IPMI EPICS Integration

Piotr Perek

MTCA Management

WU3 Scope

Assumptions and Ideas

Progress report

Available Solutions

WU3 IPMI EPICS Integration

Piotr Perek

MTCA Management

WU3 Scope

Assumptions and Ideas

Progress report

Department of Microelectronics and Computer Science Low-level API:

ipmitool https://github.com/ipmitool/ipmitool
ipmiutil http://ipmiutil.sourceforge.net https://git.code.sf.net/p/ipmiutil/code-git
freeipmi https://www.gnu.org/software/freeipmi https://git.savannah.gnu.org/git/freeipmi.git
OpenIPMI http://openipmi.sourceforge.net

https://git.code.sf.net/p/openipmi/code

 OpenHPI http://openhpi.org https://github.com/open-hpi

EPICS:

 ipmiComm → e3-ipmiComm https://github.com/icshwi/e3-ipmiComm

Available Solutions

WU3 IPMI EPICS Integration

Piotr Perek

MTCA Management

WU3 Scope

Assumptions and Ideas

Progress report

Department of Microelectronics and Computer Science Low-level API:

ipmitool https://github.com/ipmitool/ipmitool
ipmiutil http://ipmiutil.sourceforge.net https://git.code.sf.net/p/ipmiutil/code-git
freeipmi https://www.gnu.org/software/freeipmi https://git.savannah.gnu.org/git/freeipmi.git
OpenIPMI

http://openipmi.sourceforge.net https://git.code.sf.net/p/openipmi/code

- OpenHPI http://openhpi.org https://github.com/open-hpi
- EPICS:
 - ipmiComm → e3-ipmiComm https://github.com/icshwi/e3-ipmiComm

Proposed Software Architecture

WU3

Μ

Pr

Depa

MTCA Example based on OpenHPI

IPMI EPICS Integration	nat> show_fru
Piotr Perek	FRU Information:
TCA	FRU Device State Name
U3 Scope	 О МСН М4 NMCH-СМ
sumptions and eas	3 mcmc1 M4 NAT-MCH-MCMC 6 AMC2 M4 DMCS-PTPM
ogress report	7 AMC3 M4 TAMC641 9 AMC5 M4 AIES-MFMC 13 AMC9 M4 AIES-MFTM-1588
	40 CU1 M4 Schroff uTCA CU
	51 PM2 M4 PM-AC1000
TICS	53 PM4 M4 PM-AC1000 60 Clk1 M4 MCH-Clock
	61 Hub1 M4 MCH-PCIe 64 RTM1 M4 AIES-MPCIE16
tment of Microelectronics	

MTCA Example based on OpenHPI

WU3 IPMI EPICS Integration

Piotr Perek

MTCA Management

WU3 Scope

Assumptions and Ideas

Progress report

Department of Microelectronics and Computer Science

```
==> RPT Entry ID: 0x3
Tag: DMCS-PTPM
Entity Path: {SYSTEM_CHASSIS,7}{SHELF_MANAGER,0}{AMC,2}
FRU TD: 6
==> RPT Entry ID: 0x1
Tag: Schroff uTCA CU
Entity Path: {SYSTEM_CHASSIS,7}{SHELF_MANAGER,0}{COOLING_UNIT,1}
FRU ID: 40
==> RPT Entry ID: 0x8
Tag: PM-AC1000
Entity Path: {SYSTEM_CHASSIS,7}{SHELF_MANAGER,0}{POWER_SUPPLY,4}
FRU TD: 53
==> RPT Entry ID: 0xC
Tag: NMCH-ShM
Entity Path: {SYSTEM_CHASSIS,7}{SHELF_MANAGER,0}{SWITCH_BLADE,0}
FRU ID: 0
```

10/14

Progress

WU3 IPMI EPICS Integration

Piotr Perek

MTCA Management

WU3 Scope

Assumptions and Ideas

Progress report

Department of Microelectronics and Computer Science Migration to CentOS

- E3 getting to know, playing with tutorial and examples
- Initial IOC corresponding to the console example and compliant with E3 still in progress...

Last meeting - important questions

WU3 IPMI EPICS Integration

Piotr Perek

MTCA Management

WU3 Scope

Assumptions and Ideas

Progress report

- Do we really need separate daemon for chassis monitoring? Is it OK from the ESS IT point of view?
- IOC is a kind of daemon
- If we don't want to use external daemon we should not use OpenHPI and implement everything from scratch

Future plans

WU3 IPMI EPICS Integration

Piotr Perek

MTCA Management

WU3 Scope

Assumptions and Ideas

Progress report

- Finishing the E3-compliant IOC example
- Development of library dedicated for our purposes based on OpenHPI (and other libraries if really needed)
 - First step support for all reading/monitoring features
 - Avoiding development of IPMI protocol from scratch
 - Providing some missing commands specific for MicroTCA.x
 - Check how to send configuration command using OpenHPI

WU3 IPMI EPICS Integration

Piotr Perek

MTCA Management

WU3 Scope

Assumptions and Ideas

Progress report

Thank you for your attention

Department of Microelectronics and Computer Science

14/14