

ESS High Beta Cavities Status Update; Interfaces

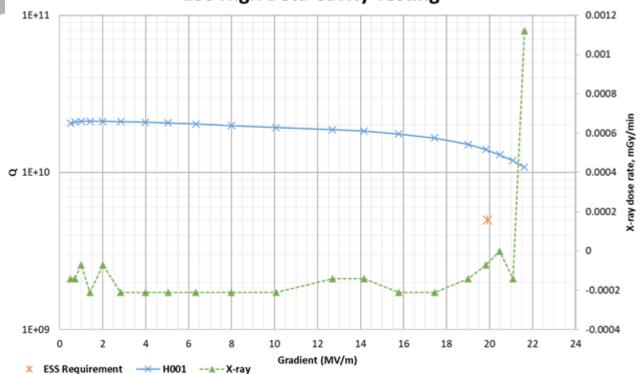
10th ESS SRF Collaboration Mike Ellis

Thanks to all teams for input including:

Cavity Manufacturing;

SuRF Lab;

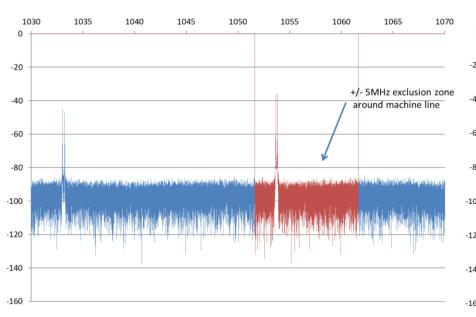
QA-QC

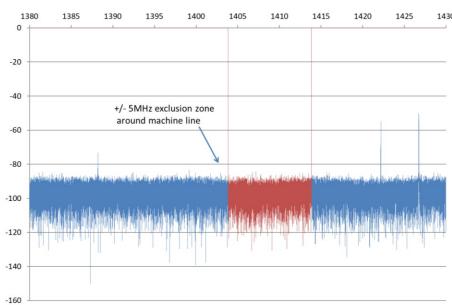


Item	Description						
Α	Cavity Fabrication – Status						
	• H001 data						
	H002 – H004 fabrication status						
	Tolerances – Half-cell and Dumbbell shape						
В	SuRF laboratory & VTF status (Mark & Paul to present)						
	Current status						
	Commissioning sequence / schedule						
	Testing limits proposal						
С	Interfaces & status						
	Antennae – input						
	• Elbow						
	Sliding tank						
D	Frequency assessment criteria						
	Tuning range proposed						

A: Fabrication (1) H001 results EUROPEAN SPALLATION SOURCE

ESS High Beta Cavity Testing


Measurements at highest power reached				
Eacc	21.62 MV/m			
Q0	1.08E10			
F	704.424			
	MHz			
X-ray top	0.00112			
	mGy/min			
Х-гау	0.00182			
bottom	mGy/min			


- Eacc vs Q0
 - OK
- X-ray
 - OK
- F(pi)
 - NOK -> RI to retune cavity, target between [704.030, 704.264] MHz

A: Fabrication (2) H001 results EUROPEAN SPALLATION SOURCE

HOM measurements @ 2K

• 3rd harmonic

- 2.97MHz from machine line: NOK?
- Thanks to Enrico for input & support
 - TE mode, not dangerous?
 - A Farricker et al. MOPOR038 IPAC->
 5kHz from machine-lines should be ok?

• 4th harmonic

- OK
- Mode at 1422.172 MHz
- 8.32MHz from machinelines

A: Fabrication (3) HC, DB and H002, H003, H004

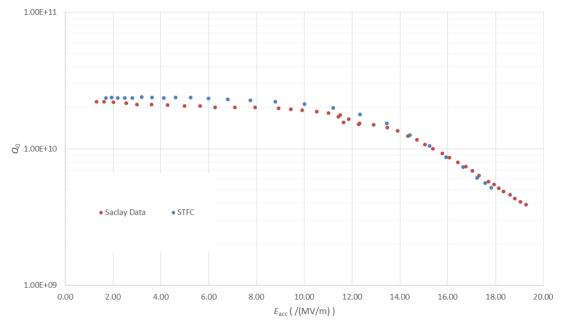
- Status of manufacturing:
 - Raw and single parts: 54% complete
 - Half cells: 484 finished, 419 in progress (~54%)
 - Other single parts: 174 finished (2112 required) (~ 8%)
 - Sub assemblies: 3% complete
 - Overall manufacturing: 31% complete
- Pre-series production schedule:

Cavity	Schedule change	1 st DESY test (bare)	2 nd DESY test (jacket)	Delivery @ STFC	Comments/caveats
H001	None	Complete	26/Jul	30 Aug / 2 Sep*	Pending confirmation of DESY testing in Aug
H002	~1wk behind	14-21/Aug	9/Oct	9/Nov	
H003	Significantly ahead	21-28/Aug	16-18 Oct	16-18 Nov	
H004	Significantly ahead	28/Aug	16-18 Oct	16-18 Nov	Pending replacement/reshaping of 2 DBs out of spec

A: Fabrication (4) HC, DB and H002, H003, H004

Specifications							
Deviation	Original spec CHC and EHC	Reviewed spec - CHC	Reviewed spec - EHC				
Min +/- 0.2	90%	80.0%	85.0%				
Max +/- 0.2-0.3	10%	20.0%	10.0%				
Max +/- 0.3-0.5	0%	3.5%	3.5%				
Max >+/- 0.5	0%	0.0%	0.0%				
Estimated pass rates based on sample data							
Prototypes (RI/CEA)	12%	47.5%	90.0%				
Pre-series (RI/STFC)	15%	92.5%	91.7%				

- Acknowledgements: thanks to CEA:
 - making prototype data available
 - Supporting review of tolerances
 - Per STFC understanding, all 5 RI/CEA prototypes met RF specs
 - Only 12% of HCs would have met the shape profile tolerances
 - -> Many unnecessary NCRs
 - Revised tolerances proposed after consultation with CEA/ESS
 - Now expect c. 92% pass rate -> reduce NCRs to only really the worst half-cells
 - No expected impact on HOMs since population is statistically almost identical to prototype distribution of HC shapes
 - DBs: similar situation, under review
 - Will close out after statistics available from pre-series



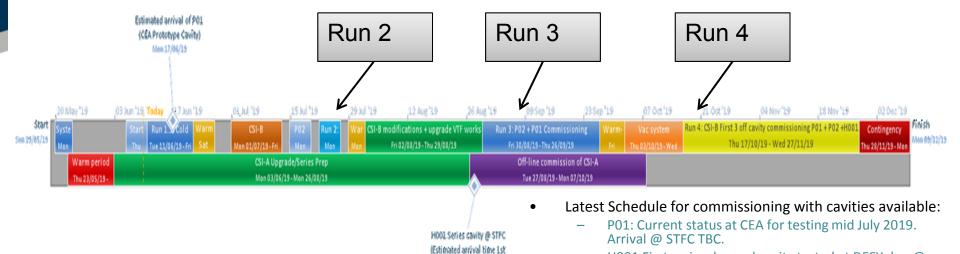
B: SuRF lab (1)

EUROPEAN SPALLATION SOURCE

P02 Q₀ vs E_{ACC}, Status Summary

- Same calculation method used as CEA Saclay
- Good agreement within expt. errors
 - Q-10-15%
 - Eacc-5%
- Investigating heat dissipated on input probe
 - Series cavities have a Cu probe
 - Prototypes have a Ti probe
 - 3xRs -> 3 times loss
- Radiation survey in progress
 - To complete when P02 on top cradle
- Cryogenic performance excellent
 - 36hr to cool shields to 75K
 - 6hr to cool CSI insert to 4.2K
 - Stability: ±0.1mBar, ±1mK on static load (no RF)
- Q0 vs Ecc
 - Good agreement with CEA P02 results
 - Investigating heat load on input probe: Cu vs Ti?
 - Run-2 planning to test thermal anchor solution for input antenna

- HOMs measurements
 - Completed through RF rack on cold cavity
- Cleanroom and HPR systems
 - Cleanroom build complete
 - UPW on schedule to complete 8th July
 - HPR final build phase w/c 1st July


B: SuRF lab (2)

H001 First series dressed cavity tested at DESY due @

STFC 28th August 2019

Overall commissioning schedule

Series cavity)

Wed 22/03/19

- Run 2 (22 26 July):
 - De-risk: Rad survey completion (P02 Top cradle)
 - High Power Tests ~200W (localised cooling installed on flange)
- Run 3 (30 Aug 26 Sep):
 - P01 + P02 Commissioning
- Run 4 (17 27 Oct):
 - P01 + P02 + H001 Commissioning
- Utilising P01 + P02 + H001 for commissioning and de-risk
- SuRF lab to review and update series schedule after Run 3

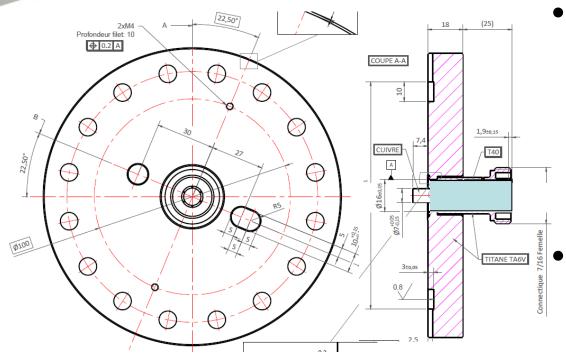
B: SuRF lab (3) Series cavities commissioning

- Proposal: Q1/2020 will be utilised for:
 - Verification and validation with production dressed cavities
 - HB002 + HB003 + HB004 tested from DESY for benchmarks
 - Commissioning times may be shortened dependant on Run-3 conclusions
- Di-Phase pipe cutting validation with DESY:
 - H001 (+ H002?) TBC
- Further De-risk testing strategies under consideration

B: SuRF lab (4) Radiation limit

Pole outside Bunker wall pointing Top of LHe SuRF Office toward main offices dewar

- STFC plan to test cavities up to:
 - Gradient
 - 19.9MV/m: specification pass level
 - Test to 22.9MV/m 'best efforts'
 - RF amplifier power limit:
 - C. 200W incident
 - X-ray limit:
 - Based on safe x-ray level in SuRF lab ("SuRF Office Pole")
 - TBD mSv/hr on cavity axis
 - Thermal power limit
 - TBD


Preliminary radiation survey results: x-ray data PO2, middle CSI cradle

RF Incident	Cryostat	SuRF	Bunker Wall	On LHe Dewar	Middle cradle	Upper cradle	Lower cradle
Power	Lid	Office Pole			axis	axis	axis
[W]	[µS/hr]	[µS/Hr]	[µS/Hr]	[µS/Hr]	[µS/Hr]	[µS/Hr]	[µS/Hr]
46.9	580	0.85	25	0.4	170,000	40,000	40,000
96	2600	3.2	211	1.5	500-600,000	170,000	170,000

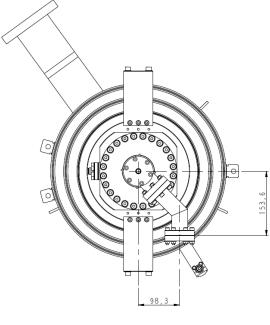
C: Interfaces (1) Input antenna

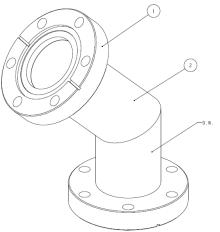
Changes:

- 7/16" connector
- Direct mount to flange
- STFC to provide small qty of adapters, supplied with first batch of cavities

Testing:

- N2 plunge test at supplier
 - 12x repeats total


Delivery schedule:


First batch July 2019

C: Interfaces (2) 45° Elbow

- Material
 - 316LN or 316L with $\mu \le 1.005$ (1.02?)
- Process sequence / description
 - RI to install in cleanroom;
 - 1 per cavity, no recirculation
 - Delivery to STFC
 - under 1atm with blind flange
 - At STFC:
 - Connection in modular cleanrooms ISO4
 - Cold test
 - Disconnection & removal
- CEA requirements
 - No change to mechanical interfaces
 - Ensure valve cleaned prior to making connection
- Cost, schedule impact:
 - Awaiting RI feedback

C: Interfaces (3)

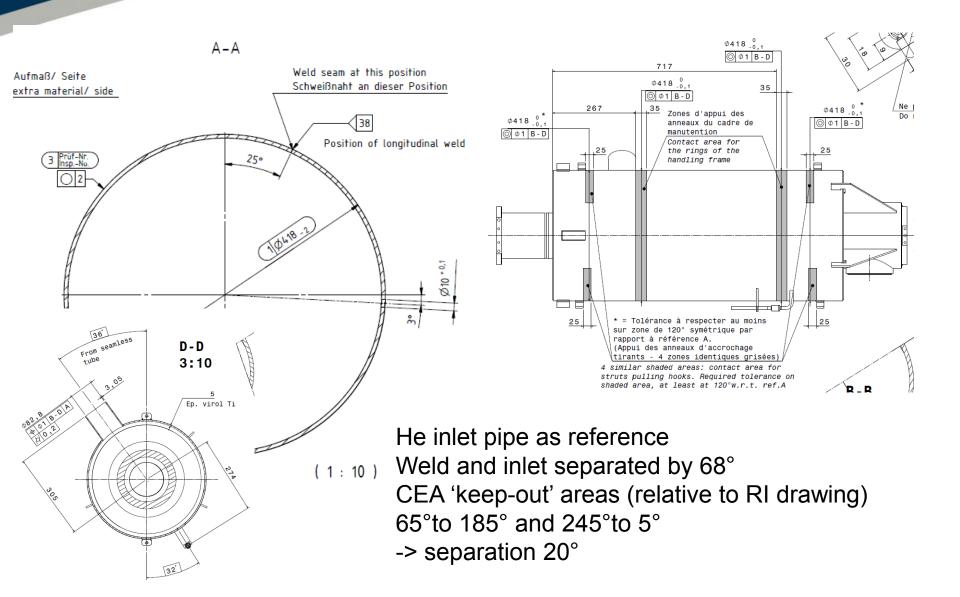
Sliding tank design & requirements

- Expect there to be no systematic change in frequency:
 - Individual cavities +/-30kHz but average to 0kHz over all cavities
 - To be validated during pre-series cavity testing
- Tuner interfaces (blocks):
 - All geometric & dimensional tolerances included in RI design
 - Condition of approval of design from STFC was respecting CEA interface requirements
 - Suggest Nik / Vincent review in detail specific requirements
 - Welding & machining of blocks expected before final assembly
 - · Post machining possible as corrective action if required
 - Will be checked with dummy tuner at RI
 - RI dummy tuner what are maximum material and least material tuner conditions?

Pressure test:

- Main issue is the additional length of pipe
 - Total volume with pipe & flange: 49.2L
 - RI test pressure: 1.5 bar
 - RI issue certificate at 49.2L x 1.01 barg = OK with Art. 4.3
 - STFC remove additional length, volume -> 48L
 - STFC issue new certificate based on RI pressure test

• Weld seam:


- Outside the identified mounting regions
 - Separation approximately 20°(Z282136)
- Diameter tolerance on specific areas therefore [-1,0]

C: Interfaces (4)

EUROPEAN SPALLATION SOURCE

Sliding tank design & requirements

D: Frequency (1) Assessment criteria

- ESS-0343220; STFC 1226-WP11-rep-0017-v0.5
- Work completed:
 - Analysis of frequency and variability at each manufacturing step
 - Analysis of CEA / INFN proposal and requirements
 - Proposal for cold frequency target without tuner
- Assessment / acceptance criteria proposed:

Check during	Test	Approval	Conditions	f(π) _{min} [MHz]	f(π) _{max} [MHz]
AL2 - Tuning	RI	STFC	Bare cavity, FMS installed, 702.721 294K, 1atm(?)		702.955
AL3 outgoing	RI n/a –		He tank, 294K, UHV, brackets fitted	702.881	703.115
		reference		for transport checks ref. only	
AL4 incoming	STFC	STFC	He tank, 294K, UHV, brackets fitted	No change from AL3 outgoing Tolerances TBD	
AL4 cold test	STFC	ESS	He tank, 2K, UHV, no tuner	704.030	704.264
AL4 outgoing	itgoing STFC n/a	n/a	He tank, 294K, UHV, brackets fitted	702.881	703.115
				for transport checks ref. only	
AL5 incoming	CEA	ESS	He tank, 294K, UHV, brackets fitted	No change from AL4 outgoing Tolerances TBD	