

ESS-Bilbao

R. Vivanco, A. Aguilar, J. Aguilar, V. Medina, G. Bakedano, S. Stepanyan, M. Magán, F. Sordo, M. Pérez A. Andersson, S. Ghatnekar

CDR PBW-PB & Vessel - 04 July 2019, Lund (ESS)

R. Vivanco (ESS-Bilbao)

Table of contents

Load scenarios, requirements and materials

Analysis by analytical formulae

Analysis by FEM

Results

R. Vivanco (ESS-Bilbao)

Load scenarios, requirements and materials

Load scenarios, requirements and materials

Load scenarios, requirements and materials

Mechanical analyses

Design and operating pressures and Temperatures

Pressure:

- PD= Vacuum / 2 bar(g) 1 bar(g)
- PO= Vacuum
- PM= 0 bar(g)
- Temperature:
 - TD= 80ºC
 - TO=50ºC
 - TM=35ºC

ESS-109482 Change of design pressure of Monolith Vessel. (May 2019)

Load Combinations

ESS-0135130 KFM

5.4. Load combinations system part D

Combination	Rule for combination	Event class	Criteri a level	Remarks
D01	(PD+TD+DW)	SF1	Α	
D02	(PO+TO+DW+SF1_NL)	SF1	Α	•
D03	(PO+TO+DW+SF2_NL)	SF2	Α	
D04	(PO+TO+DW+SF2_NL) + SF2_EQ	SF2	Α	
D05	(PM+TM+DW) +SF2_ML	SF2	Α	
D06	(PO+TO+DW+SF3_NL) + SF3_TB	SF3	С	
	(PO+TO+DW+ SF3_NL) +SF3_EQ	SF3	С	
D07	+ SF3_TB			
D08	(PO+TO+DW+ SF4_NL)	SF4	D	
D09	(PO+TO+DW+ SF4_NL) +SF4_EQ	SF4	D	

Table 11. Load combinations for system part D

Load scenarios

• Analyzed: D01, D04, D05, D07, D09, D11.

Additionally: Hidrostatic test (PT)

Loads considered

- DW:
 - Weight of all components.
 - Shielding blocks of PBW System.
 - Half of the weight of Drift pipe.
- Maintenance Loads:
 - Checking if 10t RH cask can be placed over the PBW-Vessel.
- Confinement release:
 - 2 bar(g) overpressure
- Nozzle loads:
 - 5 feedthorughs:
 - 2 load free: vacuum
 - 3 cabling and piping. Pipes connected to blank flange, only weight is considered (max diam=25mm<<DN250).</p>
- Temperature:
 - Reduced radiation levels: no secondary stress need to be checked (Materials Guide).
 - Only material properties affected.
- Pressure (force) from PBW Pneumatic Seals.
- Cooling circuit:
 - PD=5 bar
 - PT=1.43 * 5 bar

Loads considered

- Seismic loads:
 - H2 (SF2), H3 (SF3), H4 (SF4)

Load scenarios, requirements and materials

Mechanical analyses

Special functional requirements

• Pressure from PBW Seals

Materials

- PB, Vessel, flanges, bellow, rigid struts and pipes:
 - SS316L: X2CrNiMo17 12-2 according to A3.3S RCC-MRx Appendix 03.
- Bolts:
 - 25CrMo4 (changed acc. to manufacturer) \rightarrow 42CrMo4 according to A3.11S RCC-MRx Appendix 03.
- Gaskets:
 - EPDM gaskets: 5 feedthroughs, 1 PBW-vessel to vessel cap. REMOVABLE
 - Spring energized (Helicoflex): 1 PB to PBW-Vessel. Properties from manufacturer. PERMANENT

Analysis by analytical formulae

R. Vivanco (ESS-Bilbao)

Mechanical analyses

Applicable design rules

- Thickness of shells subject to pressure: according to RD 3332
- Openings and their reinforcements: according to RD 3333
- Evaluation of stress limits for primary loads: according to RD 3354 and RD 3355
- Consideration of buckling: according to RD 3370
- Bolted assemblies: according to RD 3380 (bolted flanges designed following the rules of Appendix A6).
- Analysis of bellows: according to RB 3700 for single ply bellows.

Analysis Procedure

- 2 step analysis:
 - First, design rules used to check and modify minimum thickness.
 - FEM evaluation to check mechanical stresses under code limits, and displacements.

Mechanical analyses

Thickness against internal pressure

RD 3332.2 Subsection D and RB 3332.3 Subsection B

Element (ID 4)	Nominal Diameter	Class	Section	P (bar)	T (° C)	D _i (ID 2) (mm)	S (MPa)	h _r (mm)	h _n (ID 2) (mm)	
						1010		0.8425(*)	7 (in 3D model) /	
Wall _{PBW-Vessel}	_			2	80	810	120	0.6757	10 (thickness considered in the	
						700		0.5839	calculations)	
	DN100CF (X48)	NIC	ר נככב חמ			104		0.0868	5	
	DN250CF (X49)	NS _{RX}	ND 3332.2	ND 3332.2			250		0.2085	7
Nozzles	DN250CF (X50)			2	80	250	120	0.2085	7	
Prozenco IPBW-Vessel	DN250CF (X51)					250		0.2085	7	
	DN40CF (X52)					37		0.0309	5	
Wall				2	80	l = 475	120	13.7121	27	
vvaii pBW-pB	_	N1 _{RX}	RD 3332.3	2	80	= 125	120	3.6084	10	
Lid cooling circuit (_{PBW-PB)}	-	IX		6	35±2	= 22	122	1.2197	2	

Thickness against external pressure

Appendix A12

Element	D _e (ID 2) (mm)	T (ID 2) (mm)	L (ID 2) (mm)	D _e /T	L/D _e	А	B (bar)	P _{ad} (bar)	P (bar)
	1030	10	2503	1030/10	2503/1030	0.00058	55.2	7.1	1
Wall _{PBW-Vessel}	830	10	985	830/10	985/830	0.00190	81.7	13.7	1
	720	10	348	720/10	348/720	0.00480	85.1	22.3	1
	(X48): 108	5 / 2	(X48): 156	108/2	156/108	0.0038	84.2	27.3	1
	(X49): 256	7/3	(X49): 199	256/3	199/256	0.0023	82.4	14.3	1
Nozzles	(X50): 256	7/3	(X50): 199	256/3	199/256	0.0023	82.4	14.3	1
	(X51): 256	7/3	(X51): 199	256/3	199/256	0.0023	82.4	14.3	1
	(X52): 40	5 / 1,5	(X52): 103	40/1.5	103/40	0.0034	83.8	53.1	1
							Margin:	Level A / C / I	D > 2.8

Mechanical analyses

Bolted Assemblies

• Appendix A06

Bolted Assemblies

Appendix A06

1 : one-piece flanges with the cylindrical shell

Special calculation for Helicoflex gasket

	A.S.M.E. Section VIII Division I	Technetics Group
Operating load	Wm2 = п.b.G.y	Fj = n.Dj.Y ₂
Hydrostatic force	H = n. <u>G²</u> .P	$F_F = n. \frac{(Dj)^2}{4}$.P
Minimum service load	Н _Р = 2.b.п.G.m.P	Fm= n.Dj.Ym $Ym = \begin{array}{c} Ym_1 = Y_1 \\ Ym_2 = Y_2 \frac{P}{Pu \Theta} \end{array}$ Use the greater of the two
Minimum tightening load to apply	$W = {(1) W_{m2} \atop (2) H + Hp} = W_{m1}$	$F_{_{B}} = (1) Fj$ (2) $F_{_{F}} + F_{_{m}} = Fs$
on bolts	Use the greater of the two (1) or (2)	Use the greater of the two (1) or (2)

Bolted Assemblies

Appendix A06

Stress value	Limit [MPa]	PB-Flange [MPa]	Vessel Cap-Flange [MPa]
M _A =W _A ·h _G [N·m	ım]		
kF*σH	1.5S = 180	139,74	2,00
kF*or	S = 120	29,05	0,13
kF*σθ	S = 120	22,41	0,47
kF*(σH+σr)/2	S = 120	84,39	1,07
kF*(σH+σθ)/2	S = 120	81,08	1,24
Mop (H _{G,min}) [N	·mm]		
kF*σH	1.5S = 180	43,32	51,16
kF*σr	S = 120	9,00	3,39
kF*σθ	S = 120	6,95	11,96
kF*(σH+σr)/2	S = 120	26,16	27,28
kF*(σH+σθ)/2	S = 120	25,13	31,56
Mop (Wsi) [N·n	חm]		
kF*σH	1.5S = 180	176,54	135,47
kF*σr	1.5S = 180	36,70	8,99
kF*σθ	1.5S = 180	28,32	31,66
M _A = WSi·h _G [N·	mm]		
kF*σH	1.5S = 180	174,16	114,50
kF*σr	1.5S = 180	36,20	7,60
kF*σθ	1.5S = 180	27,93	26,76

Stress value	Limit [MPa]	PB [MPa]	Vessel Cap [MPa]	PB [MPa]	Vessel Cap [MPa]
Mop (Wsi)	[N·mm]	P=0,1	MPa	P=0,14	3 MPa
kF*σH	180 (A) / 216 (C)	179,36	126,11	178,12	135,68
kF*σr	180 (A) / 216 (C)	37,29	10,78	37,03	11,60
kF*σθ	180 (A) / 216 (C)	28,77	25,14	28,57	27,05
M _A = WSi∙h₀	₃ [N∙mm]	P=0,1	. MPa	P=0,14	I3 MPa
kF*σH	180 (A) / 216 (C)	178,14	113,17	176,39	117,17
kF*σr	180 (A) / 216 (C)	37,03	9,67	36,67	10,02
kF*σθ	180 (A) / 216 (C)	28,57	22,56	28,29	23,36

Mechanical analyses

Dished Head

• Spherically dished head with bolted flanges RC 3332.25 – Thickness check

Bellow

• General rules for design of bellows in RCC-MRx - RB 3700

Dimension	Value
h [mm]	0,4
h1 [mm]	0,4
h2 [mm]	0,4
De [mm]	252,9
Di [mm]	220,1
Dm [mm]	236,5
r [mm]	3,95
H [mm]	16,4
b [mm]	3,95
l (4r) [mm]	15,8
L[mm]	16,59
n0	10
Es [Mpa]	193000
poisson rat	0,3
P [Mpa]	0,1
Δl [mm]	2,37
Δx [mm]	6
Δu [mm]	4

16.00 7.40 \$355J2G3

0

1 23.40

Mechanical analyses

Rigid Struts

٩ Force reactions in each scenario.

_			Calcula	ted Force Re	eactions (N)		
Part of vessel	D01	D04	D05	D07	D09	D11	Hydraulic Test
Strut 1	192.9	14925.9	14752.1	409.4	56946.7	176074.3	143.0
Strut 2	5.9	14791.2	14579.5	277.9	56847.7	176014.0	59.9

Mechanical analyses

Feedthroughs

• Feedthroughs dimensioned according to parameters in table.

Nozzle	DN	OD (mm)	B (mm)	C (mm)	t2 (mm)	T3 (mm)	C2 (mm)	B2 (mm)	Transition (mm)
X49 a X51	250 CF	304.8	250	256	3	7	194	60	14
X48	100 CF	152.4	104	108	2	5	151	35	10
X52	40 CF	69.9	37	40	1.5	5	98	25	11

Mechanical analyses

Shielding Blocks

- Worst case: seismic loads.
- Calculated overturning of blocks, and re-stabilization forces.

Mechanical analyses

Joint coefficients

- Designed to allow volumetric inspections allowed in every component.
- Only the PB cooling channels cannot have vol. inspect.
- In service inspections don't have same req. as in workshop.
- Example: vessel feedthroughs (RT or UT).

Types of weld

- Type I.1 welds commonly used.
- Only Type III.1 will be used in Feedthroughs (RT feasible).

Table RD 3355.1a: coefficient of welded joint J

	Type of	Type of welded joint tolerated		
Examinations Volumetric examination : radiographic or ultrasonic Surface examination: liquid penetrant or magnetic particle	I.1 I.2 I.3 III.1	II.1 III.2	11.2 111.3 IV V VI	VII
Volumetric examination + Surface examination after welding (both sides)	1			
Surface examination during welding + surface examination after welding (one side)	0.85	0.85	0.5	0.5
Surface examination after first pass + surface examination after welding (one side)	0.7	0.7	0.5	0.5
Surface examination after welding (one side)	0.5	0.5	0.5	0.5

2012 Afcen RCC-MRx Code

Section III - Tome 1 - Subsection B: class N1_{Rx} reactor components and supports

Table RB 3334.4a: definition of types welded joints

Examples			nts		
	L1	butt welding	full penetration	two sides accessible	back welding
	1.2	butt welding	full penetration	two sides accessible	gaseous back protection with or without insert
	1.3	butt welding	full penetration	two sides accessible	on temporary backing strip can be inspected after removal of the strip
	11.1	butt welding	full penetration	back side inaccessible	gaseous protection with or without insert
	II.2	butt welding	full penetration	back side inaccessible	permanent backing strip
л П	111.1	fillet or T	full penetration	two sides accessible	back weld or back machining
	III.2	fillet or T	full penetration	back side inaccessible	gaseous back protection
	III.3	fillet or T	full penetration	back side inaccessible	permanent backing strip
	Ⅳ.1 Ⅳ.2	fillet or T butt welding	partial penetration	double opening preparation	double bead
	v	fillet or T	partial penetration or no penetration	straight edges or single opening preparation	double bead
	VI	fillet or T butt welding	partial penetration	single opening preparation	single bead
	fillet	no popotration	straight edges	single bead	single bead

Analysis by FEM

R. Vivanco (ESS-Bilbao)

Mechanical analyses

Analysis by FEM

- General design rules are used, according to class N3Rx (MQC3) RCC-MRx components RD 3200.
- Stress analysis to compare with material limits for level A, C and D scenarios.
- Buckling analysis
- Shell elements for the PBW-Vessel.
- Solid elements for the PB.
- Bolts simplified as bonded contacts.

Displacements of PBW sealing surfaces and PB bottom surface for PBI

- Mechanical displacement of **sealing surfaces** is calculated.
- Thermal analysis is presented in later CDR section.

Mechanical analyses

FEM Model

Meshing

- Shell mesh for the PBW-Vessel.
- Solid mesh for the PB.

Mechanical analyses

FEM Model

• Shielding blocks inside modelled as point masses. Attached to surfaces depending of the movement during load scenario.

Seismic acceleration in Y axis

Horizontal seismic acceleration

Mechanical analyses

FEM Model

• Nozzles. Point masses in DN250 to represent Cabling and media weight.

Point Mass 5 03/04/2019 18:43

Point Mass 5 Mass Magnitude: 7,9 kg Location: 4,3359;0,39978;4,093 m

Point Mass 6 03/04/2019 18:44

Point Mass 6 Mass Magnitude: 17,2 kg Location: 4,462;-3,8624e-007;4,093 m

Mechanical analyses

PBW Seal forces

• Nozzles. Point masses in DN250 to represent Cabling and media weight.

Mechanical analyses

Buckling analysis

- Rigid struts modelled as remote points.
- Point masses with inertia properties for shielding blocks.
- Assessed by analytical calculations.

Mechanical analyses

RESULTS - Buckling analysis

- 100 eigen modes are simulated.
- Minimum load multiplier for all cases of 62.7.
- There is margin despite being linear calculations.

	SHAPE NUMBER	LOAD MULTIPLIER				
	Contra Constant	berne treat at breat	41	76,401481		
		62 741961	42	76,672452		
	2	62 769264	43	76,745575		
		62.765204	44	76 865403		
	ž	62.000364	45	78 182262		
	2	62.033304	16	70 201/01		
	5	62.377632	10	70.291401		
	7	63.070047	47	70.300932		
		63.239009	40	78.4//002		
	0	63.2/9091	49	78.719593		
	3	63.2090//	50	78.959457		
	10	03.443207	51	79.188868		
	11	63.5214//	52	80.067338		
	12	63.505470	53	80.169383		
	13	63.649383	54	81.433005		
	14	63.717759	55	81.502494		
	15	63.753598	56	83.082882		
	16	63.855776	57	83.145370		
	17	63.967972	58	83.197666		
	18	64.530648	59	83,227962		
	19	64.559111	60	86,212142		
	20	67.265291	61	86.276585		
	21	67.352182	62	87 409085	81	99.225274
	22	67.630687	62	07 620110	82	99.276193
	23	68.152584	63	07.320119	83	101.04957
	24	68.332712	09	90.109290	84	101,11772
	25	68.667195	05	30.355335	85	101.62740
	26	69.100496	00	90.544473	86	101.78328
	27	69.127813	67	90.776301	87	102.24274
	28	69.192875	68	90.845283	88	102.50160
	29	69.304388	69	91.259464	89	104.82033
	30	69.365124	70	91.551481	90	106.23142
	31	69.652065	71	92.399757	91	106.51048
	32	69.751019	72	92.589695	92	108.75240
	33	70.546904	73	93.416224	93	108.91770
Min	34	70.628590	74	93.512331	94	109.12466
	35	71.365027	75	94.075986	95	109.23426
and the second	36	71.442425	76	94.262222	96	110.80132
	37	72.069476	77	95,820296	97	110.97850
0,000 1,000 (m)	38	72.099214	70	05 004571	98	111.14093
	39	75,246020	70	07 194007	99	111.52024
0.500	40	75 220522	12	57.134007	100	111 61610

Mechanical analyses

Stress analysis for Type P damages

SI | Membrane + Bending

F COMBINACIONES DULM Expression Sind dig M Umb B Content of Mark Min 2 Min 4 M

SI | Membrane

Nozzle Stress Intensity. Membrane + Bending / Membrane — D01

Mechanical analyses

Stress analysis for Type P damages

Vessel Stress Intensity. Membrane + Bending / Membrane — D09

Mechanical analyses

Stress analysis for Type P damages

Vessel Stress Intensity. Membrane + Bending / Membrane — Pressure Test

Stress analysis for Type P damages

Port Block Stress Intensity. — D04

Mechanical analyses

Stress analysis for Type P damages

• Supporting plate reactions.

Results

R. Vivanco (ESS-Bilbao)

Mechanical analyses

PBW-Vessel

• RD 3353.2 and RD 3355.

•	Level A :	$\overline{P_m} \leq J \cdot S$	$\overline{P_{L}} \leq 1.5 \cdot \mathbf{J} \cdot \mathbf{S}$	$\overline{P_m + P_b} \le 1.5 \cdot J \cdot S$	$\overline{P_L + P_b} \leq 1.5 \cdot J \cdot S$
•	Level C :	$\overline{P_{m}} \le 1.5 \cdot J \cdot S$	$\overline{P_L} \le 1.8 \cdot J \cdot S$	$\overline{P_m + P_b} \le 1.8 \cdot J \cdot S$	$\overline{P_L + P_b} \leq 1.8 \cdot J \cdot S$
•	Level D :	$\overline{P_m} \leq 2 \cdot J \cdot S$	$\overline{P_L} \leq 2.4 \cdot J \cdot S$	$\overline{P_m + P_b} \le 2.4 \cdot J \cdot S$	$\overline{P_L + P_b} \leq 2.4 \cdot J \cdot S$

	el Diameter	Type of stress		Calculated / Allowable Stresses (MPa)													
Part of vessel				Combination D01 –Level A		Combination D04 —Level A		Combination D05 —Level A		Combination D07–Level A		Combination D09–Level C		Combination D11–Level D		Hydraulic Test –Level C	
				SI _{Calculati}	SI _{Allowabl}	$SI _{Calculatio}$	SI _{Allowable}	SI _{Calculati}	SI _{Allowabl}	$SI _{Calculati}$	SI _{Allowabl}	SI _{Calculati}	SI _{Allowabl}	${\rm SI} _{\rm Calculati}$	SI _{Allowabl}	SI _{Calculati}	SI _{Allowabl}
	Ø1010	Membrane	P _m	on 10.6	e 120	n 18.1	120	on 15.2	e 120	on 18.5	e 120	on 42.9	e 180	on 122	e 240	on 15.4	e 180
		Membrane + Bending	P _m +P _b	29.3	180	65.8	180	40.55	180	46.3	180	103	216	205	288	53.12	216
Flange	Ø810 II II	Membrane	P _m	12.1	120	23.7	120	15.6	120	27.2	120	44.6	180	100.5	240	17.5	180
vessel shell & any Shell		Membrane + Bending	P _m +P _b	17.1	180	76.7	180	26.4	180	82.1	180	132.9	216	281.8	288	29.6	216
	Ø700	Membrane	P _m	15.12	120	24.7	120	19.5	120	26.1	120	39.8	180	82.5	240	15.9	180
		Membrane + Bending	P _m +P _b	34.8	180	79.5	180	42.20	180	93.9	180	99.3	216	165.4	288	24.13	216
Dorforated	Ø1010	Membrane	P _m	14.4	120	19.3	120	25.4	120	12.1	120	50.44	180	139	240	21.3	180
head or shell		Membrane + Bending	P _m +P _b	20	180	20	180	29	180	12.27	180	64.9	216	176	288	29.5	216

Mechanical analyses

PBW-PB

• RD 3353.2 and RD 3355.

	Maximum Stress Intensity	Calculated / Allowable Stresses (MPa)														
Part of the Port Block		Combination D01 —Level A		Combination D04 –Level A		Combination D05 –Level A		Combination D07–Level A		Combination D09–Level C		Combination D11-Level D		Hydraulic Test –Level C		
POL DIOCK		$\left. SI \right _{Calculati}$	$\mathrm{SI} _{\mathrm{Allowa}}$	$SI _{Calculatio}$	SI _{Allowable}	SI _{Calculati}	${\rm SI} _{\rm Allowab}$	SI _{Calculati}	${\rm SI} _{\rm Allowab}$	${\rm SI} _{\rm Calculat}$	$\left. SI \right _{Allowab}$	$\left. SI \right _{Calculat}$	$\left. SI \right _{Allowab}$	$\left. SI \right _{Calculat}$	$\left. SI \right _{Allowab}$	
		on	ble	n		on	le	on	le	ion	le	ion	le	ion	le	
Port Block Top Flange Junction	Max Stress Intensity	24.36	120	55.3	120	30.6	120	58	120	84.6	180	167.42	240	28.3	180	
Port Block walls	Max Stress Intensity	31.9	120	46.4	120	40	120	29.6	120	84.4	180	216.6	240	38.7	180	

Mechanical analyses

Connecting Pipe

- Internal overpressure and vacuum.
- Cooling circuit pressure (in pictures, results from PT).

Cooling channles at PT

Mechanical analyses

Sealing surface displacement

- Maximum relative displacement within the same surface is < 35 microns.
- Maximum relative displacement with respect to the PBW Seal surface is < 13 microns.</p>

Conclusions

Conclusions

R. Vivanco (ESS-Bilbao)

Conclusions

Mechanical analyses

Conclusions

- The PBW-Vessel, with increased 10mm thickness, 5 feedthroughs on top, a dished head of 5mm, 2 reinforcement rings and 2 flanges; can withstand all mechanical loads. Particularly, the overpressure/vacuum scenarios, and dead weight from PBW-System shielding.
- The PBW-PB, with two openings for the proton beam, 1 flange to connect to the PBW-Vessel, variable thickness in walls; can withstand all mechanical loads. Particularly, supporting the full dead weight transmitted by the PBW-Vessel.
- The **PBW-PB sealing surfaces are stiff enough** to guarantee proper countersurface for the PBW-Sealing system.
- The **PBW-PB bottom is stiff enough** to control the deformations far below 0.5 mm for the PBI.
- There are two main gaskets on top and bottom, materials selected are EPDM and Helicoflex, designed to work under both overpressure and vacuum scenarios. Guarantee from provider for leak tightness.
- The PBW-PB plates that cover the cooling channel are thick enough to withstand coolant pressure. By manufacturer recommendation, they will be increased to 5-6mm.
- The design is prepared for inspections in welds to use weld Joint coefficients=1.0, except only for the PB cooling cover plates, where a <1 coef. applied to foreseen 5-6mm is enough to withstand pressure loads. Borescope option as in Inner Shielding.</p>
- Connecting Pipe permits decoupling from MV loads, specially seismic ones. In addition, key feature during operation, to absorb thermal displacements. The full pipe withstands all mechanical loads.