

SLHiPP-2, Catania, Italy

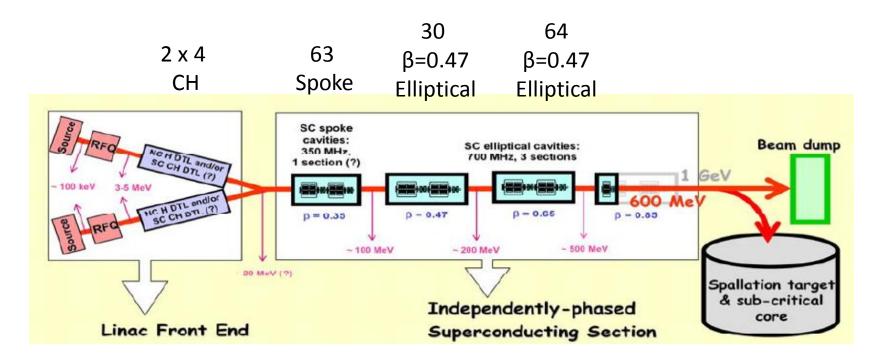
A cryogenic system for the MYRRHA linac

Nicolas Chevalier, Tomas Junquera 04.05.2012

1°) Cryogenic system requirements : heat loads

- 2°) Temperature optimization, possible 4K operation of Spoke cavities
- 3°) General description, distribution scheme

Introduction


Temperature levels :

- 2K : cavities
- 5-20 K : couplers
- 40-80 K : thermal shield

Contributions to heat load :

• Static

• Dynamic (RF)

Static heat load

	SNS [10]		XFEL [11]	CEBAF [12], [13]	Project X [14]
Cryomodule content	3 med-β elliptical	4 high-β elliptical	8β=1 elliptical	8 β=1 elliptical	18 single spoke
Focusing magnets	outside cryomod	outside cryomod	1 inside	outside cryomod	18 solenoids inside cryomod
Cryomodule Length (m)	4.24	6.29	12.2	8.25	11.2
Static Loss into 2 K (W/m)	4.64	3.55	0.11	1.8	1.73
Static Loss into 5-8 K (W/m)		-	0.9	-	-
Static Loss into 40-K (W/m)	36.55	30.36	5.82	17	8.24

For MYRRHA, short cryomodules :

- 5 W/m at 2K
- 40 W/m at 40 K

Dynamic heat load on 2K

	Spoke β=0.36	Elliptic β=0.47	Elliptic β=0.65
	352 MHz	704 MHz	704 MHz
R _{res} (nΩ)		10.0	
R _{BCS} (nΩ)	0.8	3.2	3.2
Q_0 theoretical	9.35E+09	1.0E+10	1.3E+10
E _{acc} (MV)	5.3	8.5	10.3
$Q_0 \exp^*$	2.2E+09	1.0E+10	3E+10
P _{cav} (W)	5	11.1	12.7

* Bosotti et al., Visentin et al., Olry et al.

Coupler heat loads at 5K

Coupler cooling by supercitical helium at 5 K (Mehdi Souli PhD thesis)

Current design : 1-2 loops, thermalization point (temperature range : 5-20 K)

	Spoke 350 MHz	Elliptic 700 MHz β=0.47	Elliptic 700 MHz β=0.65
Number of cavities	63	30	64
RF power per cavity (kW)	6	20	35
Power in external conductor of coupler (W)	0.7	3	5.3
Static coupler losses (W)	0.15	0.15	0.15

Coefficient of performance of cryoplant

$$\eta = \frac{1}{COP} = \frac{T}{T_r - T} \alpha(power, T)$$

Accelerator	LHC (one sector)		SNS		Project X		XFE	L
Type of data	measu		ired		specific		cations	
Operating Temperature (K)	1.8		2		2		2	
Cryo Power (kW) @ 4.5 K	18		10		41		12	
Cryo Power (kW) at op. temp.	2.4		2.4		4.3		2.8	
COP (W/W) of 2K 4.5 K	950	240	1150	386	588	240	870	-
COP(T2)/COP(T1)	3.96		2.97		2.45		-	

For MYRRHA, cryo power at 2K : \sim 13 kW \longrightarrow

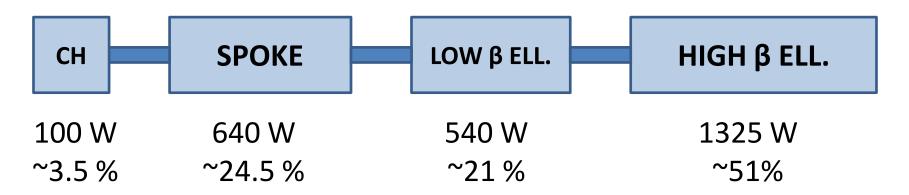
Close to XFEL or one LHC unit

Realistic goal : COP(2K) = 720, COP(4K) = 220, COP(2K)/COP(4K) = 3.3

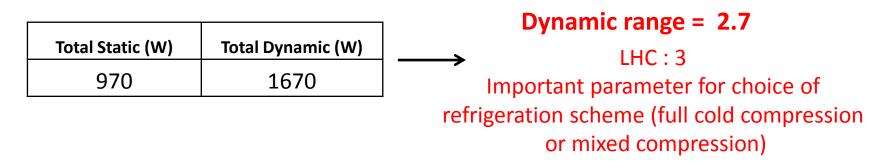
Overcapacity and total heat load budget

LHC recipe :

Overcapacity factor : 1.5 \rightarrow speed cool-down, use machine < 100 % performance Uncertainty factor : 1.25 \rightarrow imperfect Nb, electron loading, MLI wrapping etc.

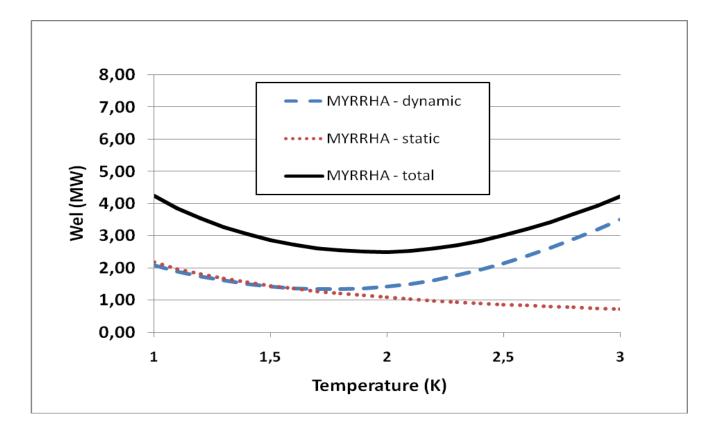


Power @ 4.5 K	Temperature (K)	Heat Load (kW)	COP (W/W)	Function
	2.1	4.75	720	Cavities
				Coupler
13.1 kW	5	1.1	220	cooling
	40	13.6	20	Shield
	40	13.6	20	Shield

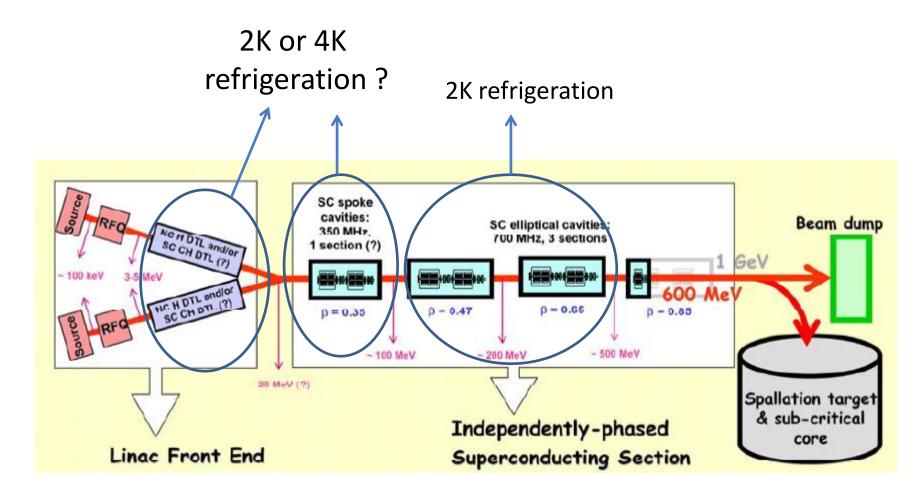

Overall power similar to : LHC (18 kW), JLAB (11 kW), XFEL (12 kW), 2 x SNS (2 x 6.4 kW)

Heat load breakdown

• Heat load distribution along linac :



- heat load is roughly 25 % | 20 % | 50 % across the three sections
- static losses ~ $\frac{1}{2}$ dynamics losses \rightarrow small cryomodule, low field
- Dynamic range at 2K: Load beam on/beam off = (dynamic + static)/static


Temperature optimization of the MYRRHA linac

COP decreases with T, R_{BCS} increases with T \rightarrow optimum of power consumption

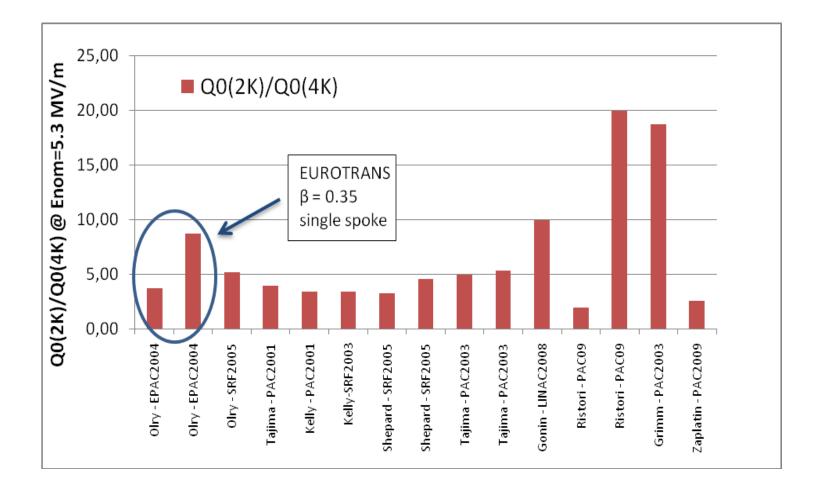
→ Optimal temperature is 1.95 K, i.e ~2K

Possible 4K operation of Spoke cavities

Possible 4K operation of Spoke cavities

For Spoke cavities, at $R_{res} = 10 \text{ n}\Omega$:

 $P_{cav 4K} / P_{cav 2K} \approx 5$


Coefficient of Performance of cryogenic plant:

 $COP_{2K} / COP_{4K} \approx 3 - 4$

Considering only dynamic losses, operation at 2K is favorable, however :

- Is $R_{res} = 10 n\Omega$ a reasonable assumption ?
- Static losses of 5W/m will be applied at 4K, not 2K
- Other factors : bath stability, microphonics

Experimental Q₀ at 4K and 2K of Spoke cavities

 $< \frac{Q_0(2K)}{Q_0(4K)} >= 5.6$

agrees with theoretical estimate

Total power consumption Comparison of 4K-2K and full 2K solutions

	Total Electric (MW)	Electrical Cost (M€/year)
Mixed 4K-2K Scheme	2.092	1.83
Full 2 K Scheme	2.1	1.84

 \rightarrow Unsignificant difference between the 2 schemes

Other aspects of 2K vs 4K : nucleate boiling & microphonics

- In 4K Helium, nucleate boiling occurs at fluxes ~ 1 W/cm²
- In MYRRHA, typical heat fluxes in cavities are 10⁻³ W/cm²

Nucleate film boiling is not an issue in MYRRHA

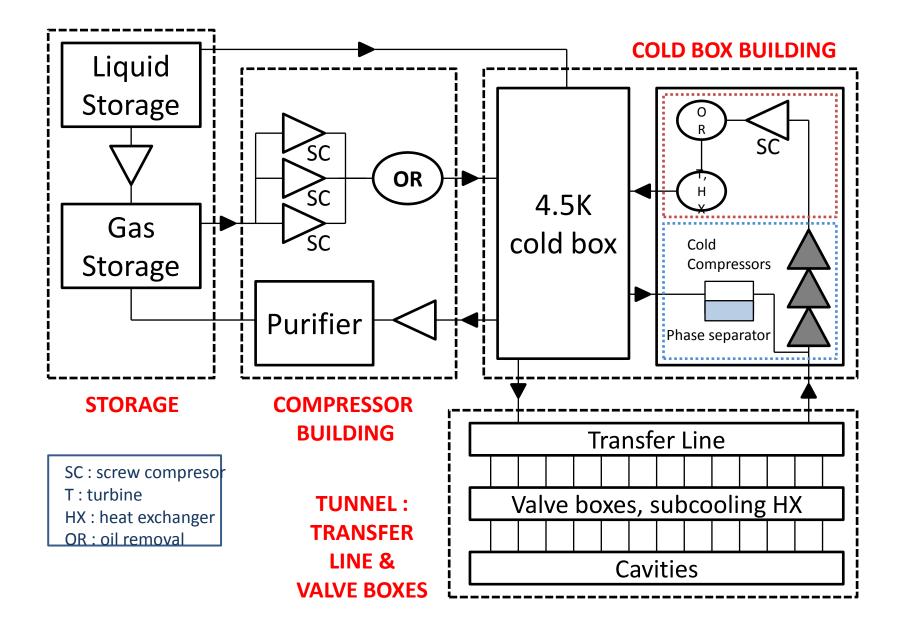
Microphonics

- Pressure fluctuations in 4K bath >> in 2K Bath \rightarrow trigger microphonics
- For Spoke cavity :

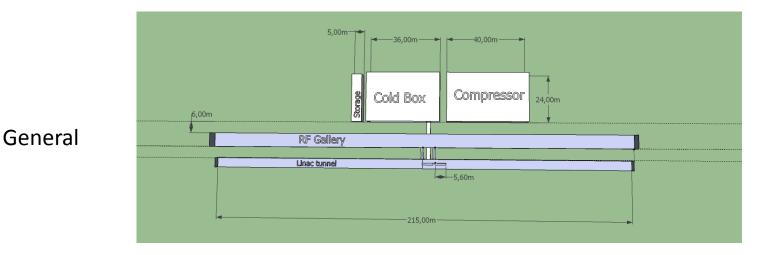
$$\Delta f_L = 150 Hz$$

- Fast (>1Hz) pressure fluctuations in 4K: 0.1-0.5 mbar (Conway et al.)
- Sensitivity : $\Delta f / \Delta p = 108 Hz / mbar$

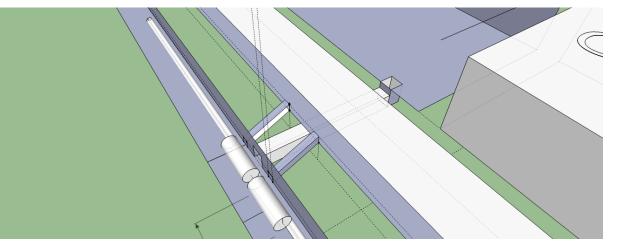
50 Hz detuning, one third of bandwidth !


Conclusions on possible 4K operation of Spoke cavities

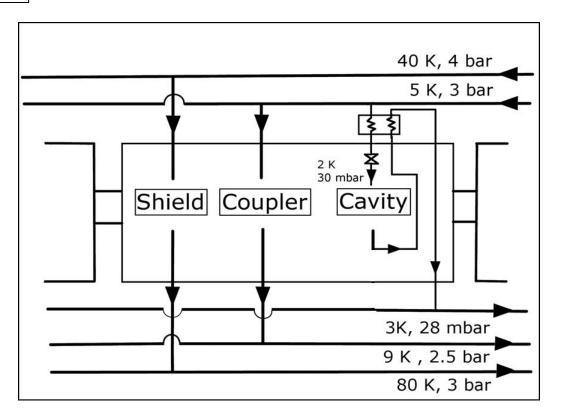
4K operation	2K operation
Easier to implement (no JT, subcooling heat exchanger, etc.)	More stable against microphonics
More reliable	A 2K pumping line will anyway be installed for elliptical cavities
Overall consumption is the same as 2K	
Cavities are cooled to 4K before pumping to 2K	


→ 4K-2K operation should be tested on prototype Spoke cryomodule

----> In the design phase, pipes should be sized to allow 4K and 2K operation


General scheme of cryogenic system

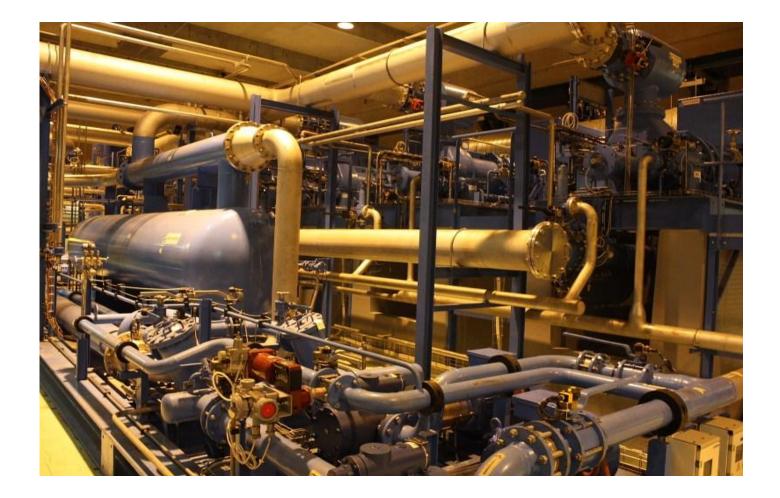
Preliminary sketch of cryoplant layout



Cryofluid distribution

Idea :

Make optimal use of supercritical helium supply line (SNS)


We are currently studying different schemes :

- Distributed heat exchanger : subcool and expand helium in each valve box (SNS, LHC)
- Centralized heat exchanger : subcool in central cold box, expand locally (JLAB)
- How many cryomodules per valve box ?

General conclusion

- Coolant : superfluid helium at 2K 30 mbar, possible 4K operation of Spoke cavities
- 13 kW @ 4.5 K, including 4.7 kW at 2K
- Estimated cost (without manpower) : 21-26 M€
- Reference cryogenic systems : LHC, XFEL, SNS
- Many open questions : distribution, transfer line design, etc.

One thing we know for sure is that it will look somewhat like this :

Thank you for your attention !