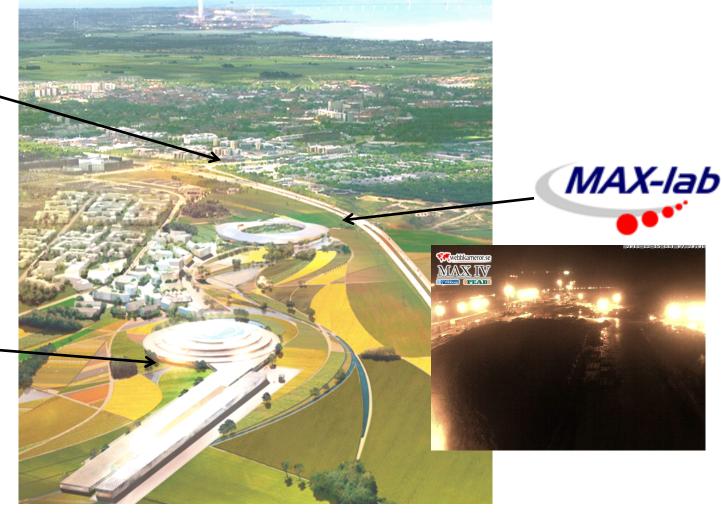
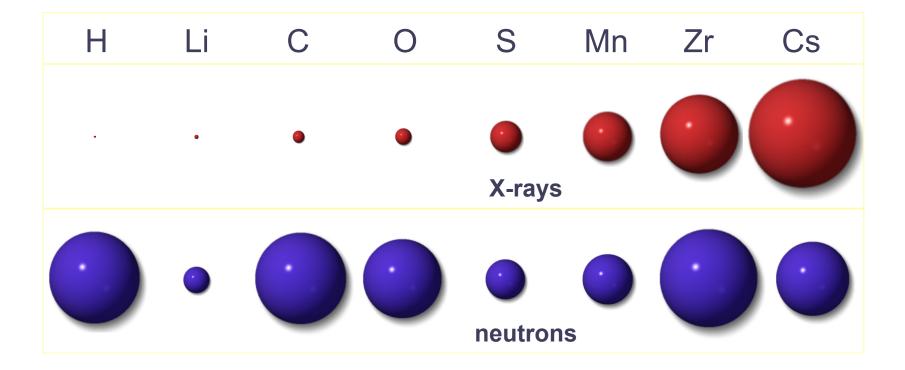
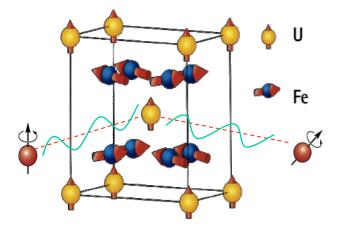
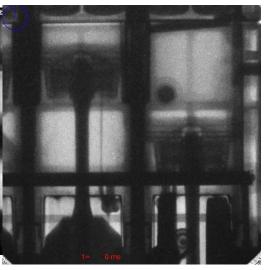
The ESS

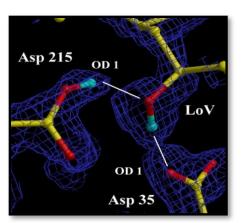
3 May, SHLiPP-2, Catania, 2012 Mats Lindroos

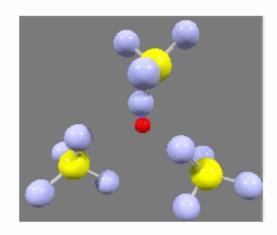

Head of accelerator division and projects


ESS, MAX-IV and Medicon Village

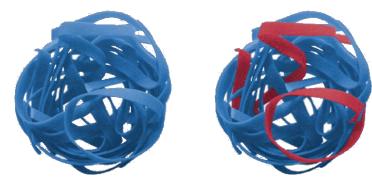





Neutrons and x-rays are complementary - neutrons...


..see magnetic atoms

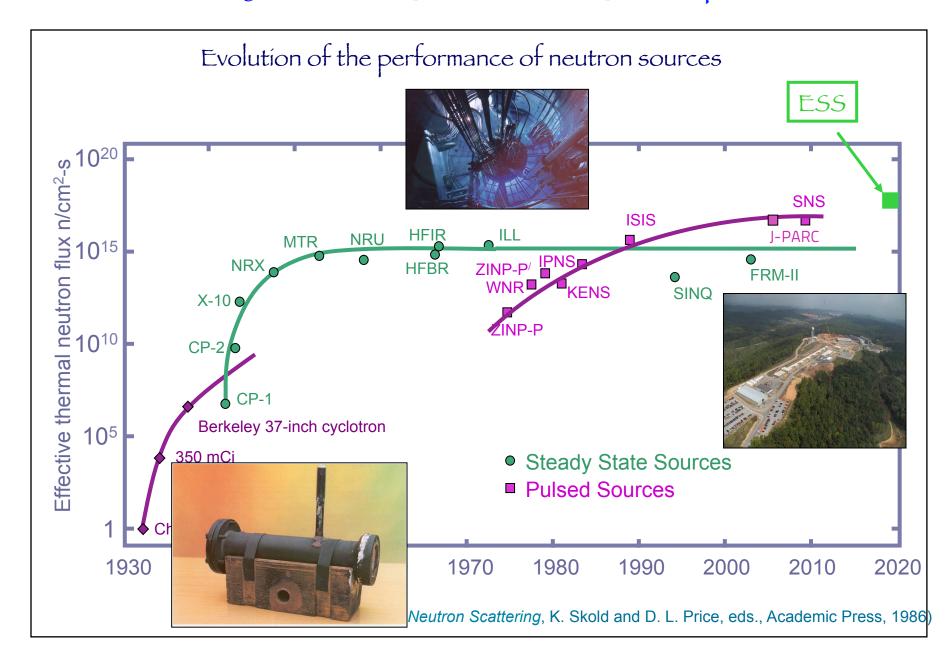
.. see inside materials



...see light atoms

..see atoms move

Courtesy of Ian S. Anderson


...see isotopes

ESS program Goal

Neutrons at ESS in Lund before the end of the decade !

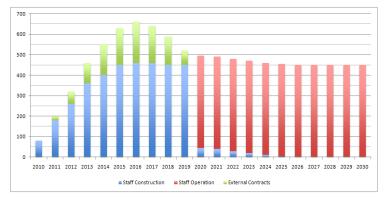
Why ESS? - High time average and peak flux

International collaboration EUROPEAN SPALLATION

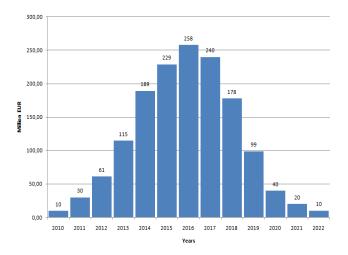
Sweden, Denmark and Norway covers 50% of cost

SOURCE

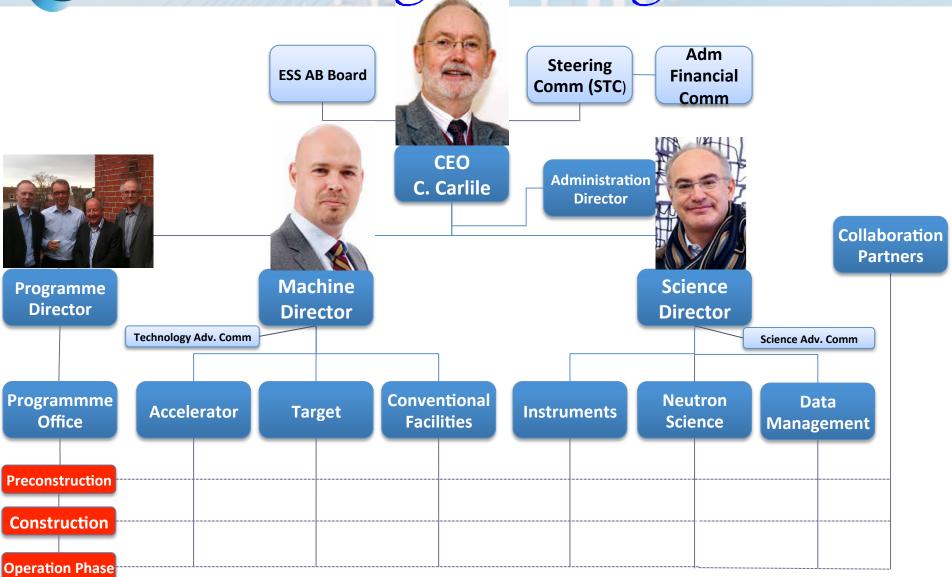
17 Partners today

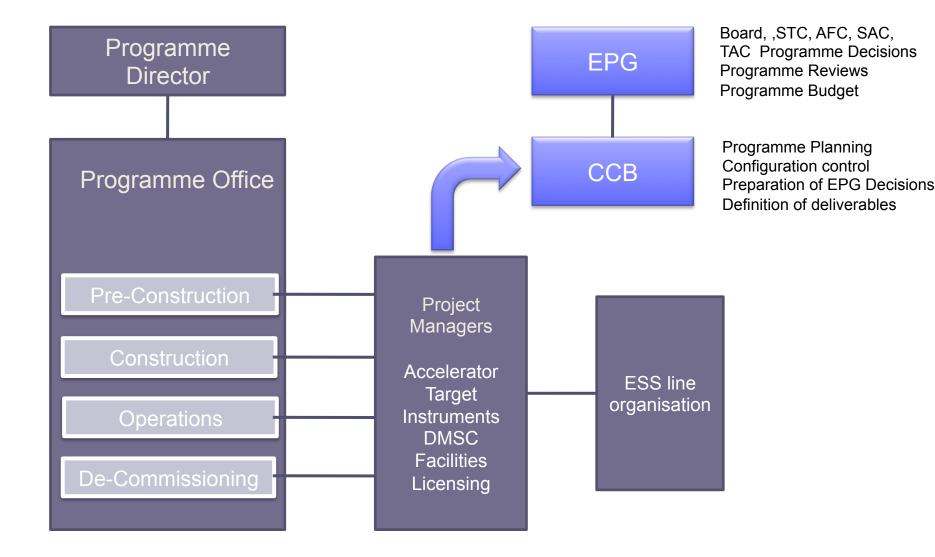


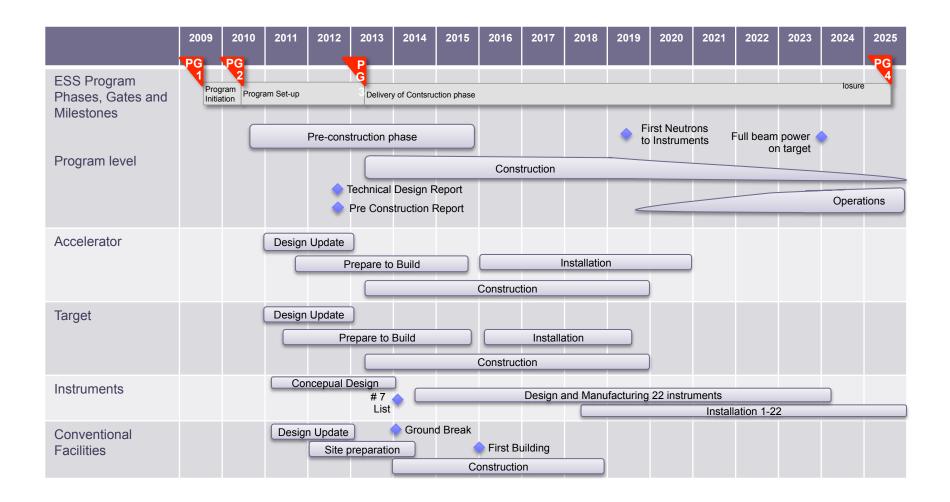
The remaining ESS members states covers the rest!

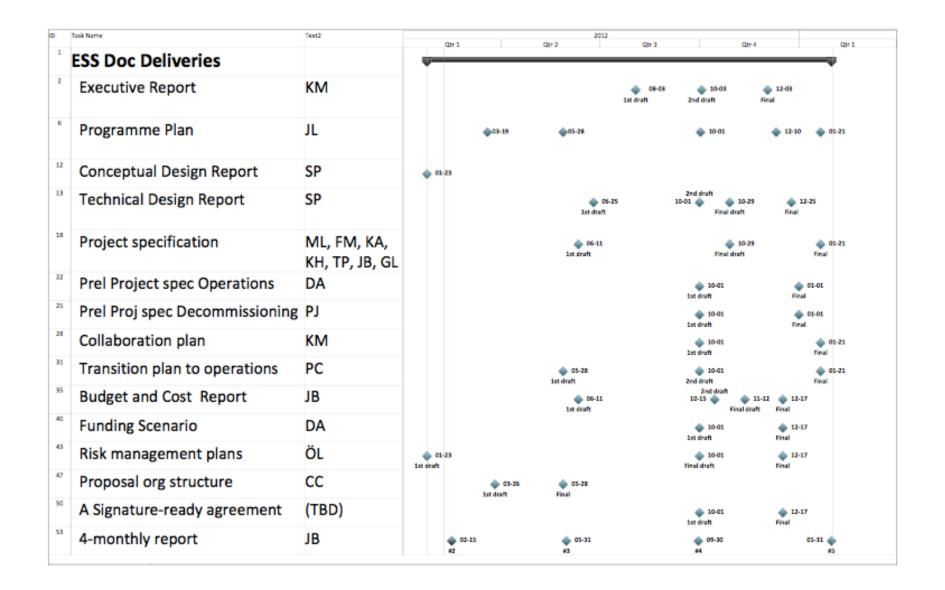

ESS construction cost estimates

Investment: 1478 M€ / ~10y Operations: 106 M€ / y Decomm. : 346 M€ (Prices per 2008-01-01)


Personel:


Investment:


ESS Programme Organisation


Programme Committees

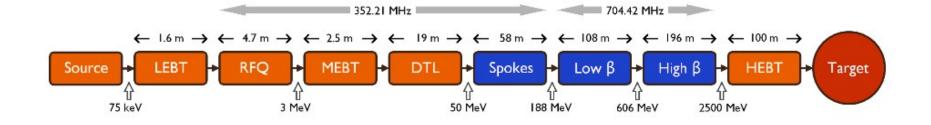
ESS Master Programme Schedule

Pre-construction deliverables (1/2)

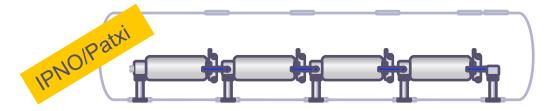
Pre-construction deliverables (2/2)

	Task Name	Text2	Qtr 1		Opr 2	2012	Qtr 3	1 0	Qtr 4			Qtr 1
	Supporting activities											
1	ESS framework project							10-01		٠	01-0	1
								09-28				
	Project Management	JB		 03 	-31	06-	30	•	12-31	٠	• 0	1-21
2								09-28				
3	Engineering processes	RD		 03 	-31	06-	30	٠	12-31	٠	• 0	1-21
•								09-28				
	Acquisition management	TW		 03 	-31	• 06-	30	•	12-31	٠	• 0	1-21
								09-28				
	IT and Information Management	HB		 03 	-31	• 06-	30	•	12-31	٠	• 0	1-21
								09-28				
	Governance and organisation	CC		 03 	-31	06-		•	12-31	٠	• 0	1-21
	"Light" review	(TBD)				06-	29					
	Governance Meetings											
	STC	CC	01-12			10/11	*	09-13/14	1 🔶	12	2-17/1	18
				03-20	06	5-04		10-24				
	ESS board	CC	•	• •	04-24		08-14		11-16	5		
	Project Milestones											
1	Target cooling concept	FM					08-01					
	Number of beam ports defined	PC						10-01				
2	Baseline Ancillary system agreed	ML							• 11-1	5		
3	Draft Concept Design Linac & Target foundation	кн			•	06-01						
4	Choice of Architects	ÖL					¢ (۵	3-31				
5	Conventional Facilities conceptual design for Accelerator	кн							٠	12	2-17	

ESS accelerator design High level objectives

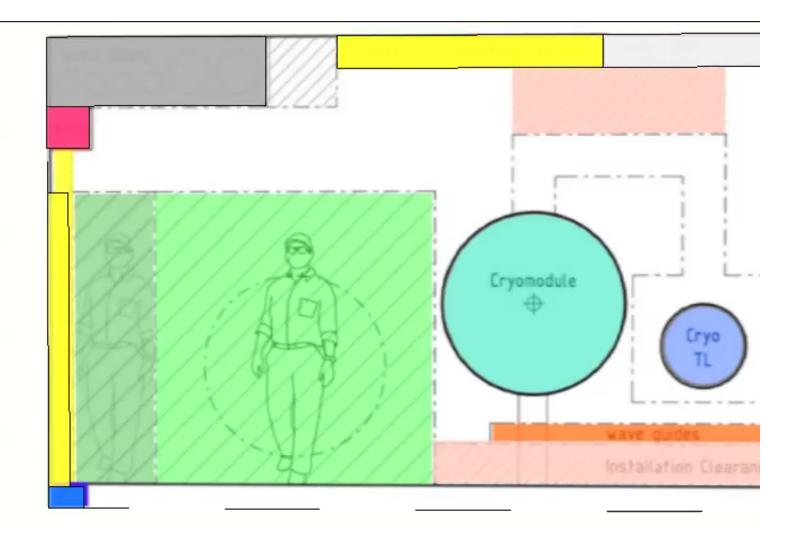

ESS accelerator high-level technical objectives:

- 5 MW long pulse source
 - -2.86 ms pulses
 - -50 mA pulse current
 - -14 Hz
 - -Protons (H+)
 - -Low losses
 - -High reliability, >95%
 - -Low heat loss cryostats
 for minimum energy
 consumption
 -Flexible design for
 a future power upgrade



	Length (m)	Input Energy (MeV)	Frequency (MHz)	Geometric β	# of Sections	Temp (K)
RFQ	4.7	75 × 10 ⁻³	352.2		1	≈ 300
DTL	19	3	352.2		3	≈ 300
Spoke	58	50	352.2	0.57	14 (2c)	≈ 2
Low Beta	108	188	704.4	0.70	16 (4c)	≈ 2
High Beta	196	606	704.4	0.90	15 (8c)	≈ 2
HEBT	100	2500				

H. Danared, M. Eshraqi, A. Ponton, ESS



- **Decision** at ESS to use a segmented design
- **Desig and construction** of ESS Spoke cavity CM at IPNO
 - Talks by H. Saugnac and Y. Rutambhara (test in Uppsala)
- Design and construction of a 4 cavity CM with SPL study at CERN ongoing
 - Talks by P. Duthil and R. Bonomi
- **Agreement** with CEA and IPNO on design and prototyping (EDD) of 4 cavity CM for elliptical cavities at ESS. Work has started.
 - Talk by C. Darve
- **Study** of pros and cons of using a single 4 cavity CM design for all elliptical cavities at ESS
 - Schedule constrained construction
 - Pros and cons under study by C. Darve at ESS AB

Tunnel cross section

Courtesy of Wolfgang Hess, ESS AB

Reflection on future operations

Operations	Source ON	Machine Studies	User Service Mode	Source ON	Machine Studies	User Service Mode
	days/year	days/year	days/year	%	%	%
ILL	200	0	200	100%	0%	100%
ESRF	289	56	233	100%	19%	81%
SNS	244	27	217	100%	11%	89%
ESS	260	30	230	100%	12%	88%

Accelerator Design Update

UROPEAN PALLATION

Steve Peggs

Cristina Oyon

Work Package (work areas)

David McGinnis

Romuald Duperrier (30 years ago)

1. Management Coordination – ESS AB (Mats Lindroos) 2. Accelerator Science – ESS AB (Steve Peggs) (3. Infrastructure Services – now ESS AB!) **4**. SCRF Spoke cavities – IPN, Orsay (Sebastien Bousson) 5. SCRF Elliptical cavities – CEA, Saclay (Guillaume Devanz) 6. Front End and NC linac – INFN, Catania (Santo Gammino)

Guillaume Devanz

Mats Lind**7**00Beam transport, NC magnets and Power Supplies – Arhus University (Søren Pape-Møller)

8. RF Systems – ESS AB (Dave McGinnis)

19. P2B: Test stands – Uppsala University (Roger Ruber)

Roger Ruber Universitet

Sebastien Bousson

di Fisica Nuclear

Santo Gammino

A sustainable research facility

Responsible

Carbondioxide: -30,000 ton/year

Renewable

Carbondioxide:

EUROPEAN SPALLATION SOURCE

- 120 000 ton/year

Recyclable Carbondioxide: - 15 000 ton/year

Upgrades

• The mandate is to build a 5 MW long pulse source!

EUROPEAN

SPALLATION SOURCE

- The presently favored upgrade scenario is a power upgrade to higher power with maintained time structure (Max. 3.5 Gev and/or 100 mA)
- Renewed interest recently in a 5 MW 100 microsecond pulse source
 - Extraction from a ring of a train of ≈1 microsecond bunches over 100 microsceonds
- We will study how this can be prepared within the present 5 MW baseline
 - The additional cost should be understood and made apparent in the costing of the 5 MW baseline
 - First technical studies and financial estimates for the upgrade itself should be done as part of the ADU project

Summary

- The European Spallation Source will be built in Lund
- The Design will permit a long life with many upgrades
- The accelerator design, prototyping and construction are done in a collaboration
- Good progress general comment at the last TAC meeting was:
 - You are really going to build it!
- We are looking forward to your feed-back and input!

Frozen accelerator design Falsterbo December 2011

