

SPL cavity and helium tank

Ofelia Capatina on behalf of the SPL team

 A string of 4 "equipped beta=1 cavities" + main coupler to be tested at CERN into a short cryo-module during 2014

Schematic view of string of 4 "equipped cavities" and main coupler

- Cavities
 - Ofelia Capatina General talk
 - Nuria Valverde & Ignacio Aviles Ongoing prototyping activities at CERN – this afternoon
 - Janic Chambrillon SM18 clean room and SRF infrastructure refurbishment – this afternoon
 - Kitty Liao Cavity vertical tests and diagnostics this afternoon
- Cryo-module
 - Vittorio Parma General talk this afternoon
 - Patxi Duthil Design progress of short cryo-module at IPNO tomorrow morning
 - Paulo Coelho Mock-ups of the cavity supporting system this afternoon
 - Rossana Bonomi Thermal studies tomorrow morning

Overview

- Introduction
- Cavity
- Helium tank
- Tuning
- Summary

- Cavities under manufacturing
 - 2 copper cavities β=1 at CERN
 - 4 niobium cavities $\beta=1$ in Industry (RI)
 - 1 niobium cavity β=1 at CERN

+ SS helium tank to be tested at CERN in cryomodule

- 1 niobium cavity β=0.65 in Industry by IPNO
- 1 (2?) niobium cavity β=1 in Industry by CEA

+ Titanium helium tank to be tested at CEA in Cryholab

- Beta = 1, CERN cavities
 - RF design done by CEA
 - Mechanical design done by CEA and CERN
 - Stainless steel helium tank design by CERN, manufacturing by CEA
 - 2 copper cavity manufacturing ongoing at CERN
 - 5 niobium cavities to be manufactured by end 2012
 - 4 in industry (Research Instruments)
 - 1 at CERN
 - To be tested in the short cryo-module at CERN
 - CEA tuner
 - CERN main coupler

Configuration to be tested in cryo-module

 SPL beta = 1 cavity + helium tank + tuner + main coupler to be installed and tested in cryo-module at CERN

Introduction

 SPL beta = 1 cavity + helium tank + tuner + main coupler to be installed and tested in cryo-module at CERN

• Design

• Manufacturing

• Process

Cavity – design

RF design Juliette Plouin, CEA, 3rd SPL collaboration meeting
Irfu

Cell RF parameters of the Saclay β = 1 cavity

saclay

	SPL	Tesla ^(a)	HIPPI
Number of gaps (Ngap)	5	9	5
Prequency [MHz]	704.4	1300	704.4
Seta .	1	1	0.47
Spk/Escc [mT/(MV/m)]	4.20	4.26	5.59
tpk/tecc	1.99	2	3.36
a [ohm]	270	270	161
Cell to cell coupling	1.92 %	1.87 %	1.55 %
r/Q [Ohms]	566	1056	175
Scen diameter aperture (mm)	129.2	70	80
Lacc = Ngap. \$.3/2 [m]	1.0647	1.058	0.5
Maximum chogy gain () Spk = 100 mT (McV)	25	24	9
Operating Temperature (O.T.)	2 κ	2 K	2 K
R _{acs} @ O.T. (theoretical [♠]) (nΩ)	3.2	11	5.2
Q ₂ () O.T. for R _{eca}	8.4*10**	2.5*1010	5*1010

🗟 : Tesla TDR, part II, 2001

$$R_{BCS} = 2.10^{-4} \frac{1}{T} \left(\frac{f}{1.5}\right)^2 e^{-17.67/T}$$

Field pattern at 704 MHz (HFSS) SPL cavity design by CEA-Saclay – Juliette Plouin

10

4

- Mechanical dimensioning
 - Static (quasi-static)
 - Lorentz detuning
 - Maximum pressure / sensitivity to fluctuation
 - Deformation for tuning
 - Handling configurations
 - Thermo-mechanical
 - Natural vibration modes
 - Bucking

Mechanical dimensioning

lrfu

saclay

CCC Mechanical parameters of the cavity

	SPL	HIPP
Nominal wall thickness (mm)	з	4
Cavity stiffness Kcav [kN/mm]	3.84	2.25
Tuning sensitivity $\Delta t/\Delta z$ [kHz/mm]	164	295
$K_{\rm c}$ with fixed ends [Hz/(MV/m)^2]	-0.55	-2.7
$K_{\rm c}$ with free ends $[Hz/(MV/m)^2]$	-3	-20.3
Pressure sensitivity K, [Hz/mbar] (fixed ends)	1.2	

The cavity will be equipped with a Saclay 4 tuner. The stiffness of the HIPPI - Saclay 4 tuner has been measured : $\rm K_{ect}$ 35 $\rm kN/mm$

The SPL cavity equipped with this tuner would present a detuning coefficient $|K_{L}| = 1 \text{ Hz}/(\text{MV/m})^2 \approx |K_{L}|$ estimated for Tesla 02/05/2012 SPL cavity design by CEA-Sacley – Juliette Plouin

Juliette Plouin, CEA, 3rd SPL collaboration meeting

🕅 M

Mechanical behaviour for real dimensions

- Dynamic (natural frequencies):
 - 3nd mode at ~140 Hz (longitudinal)

Ofelia Capatina, CERN, 4th SPL collaboration meeting jointly with ESS

OC, 3/Mai/2012

20

- Material
- Shaping
- RF tests / trimming
- Welding
- R & D

Cavity - manufacturing

• Material – Niobium supply

Gonzalo Arnau, CERN, SLHIPP – 1

Cavity – manufacturing

• Shaping

extremities

W

Half-cells

Nuria Valverde, CERN - ESS, SLHIPP - 1

Fabrication of half-cells and extremities by spinning. Subcontracted to Heggli

N. Valverde

8

15

Cavity – manufacturing

• RF measurements / trimming

Mikulas : Results on Cavity Simulations and Measurements 3 / 12

2 CERN

Measurement principles

Mitules : Results on Cavity Simulations and Measurements 10 / 12 Sensitivity study with SuperFISH

First Resonance Frequency

Q Value as quality indicator

theoretical value 22000

Tolerances amount to 1.1 MHz in a worst case scenario

Szabina Mikulas & Nikolai Schwerg, CERN, SLHIPP – 1

S21 Parameter maximum
noise level 100 dB

Cavity – manufacturing

Welding

Nuria Valverde, CERN - ESS, SLHIPP - 1

Qualifications and R&D

Said Atieh, CERN, SLHIPP – 1

- Cavities process: Cavities delivery to CERN.
- 1st Stage
 - 1-1 Check metrology.
 - 1-2 Optical inspection. (weld iris equator).
 - 1-3 Field flatness measurement + tuning.
 - 1-4 Electrolytic polishing "hard" (thickness 140 µm).
 - 1-5 HPWR to remove residuals from EP (criteria TBD).
 - 1-6 Optical inspection. (weld iris equator).
 - 1-7 HV annealing at 600°C (1 − 2 h, 10-5 − 10-6 mbar).
 - 1-8 Optical inspection. (weld iris equator)
 - 1-9 Front tank welding.
 - 1-10 Field flatness measurement + re-tuning if needed.
 - 1-11 Electrolytic polishing "Short" (Thickness 20 µm).
 - 1-12 HPWR in SM18 clean room.
 - 1-13 Closing of cavity, assembly of pickup probes and vacuum valves, drying by pumping, all in SM18 clean room; storage under vacuum.

- 2nd Stage
 - 2-1 Assembly on vertical cryostat.
 - 2-2 Baking at 120°C.
 - 2-3 Cold RF test in vertical cryostat (at CERN).
- 3rd Stage
 - 3-1 Analysis of RF test; if OK go to 4th stage.
 - 3-2 If not, either (if no quench) go to 2nd stage "HPWR in SM18 clean room".
 - 3-3 or (if quench) go to optical inspection for identification of problem, mechanical intervention, short CP, etc.
- 4th Stage
 - 4-1 Disassembling in SM18 clean room the pickup probes and vacuum valves, cavity under protective gas at overpressure
 - **4-2** Welding of the helium tank. Tuner assembly test. Locator structure socket cavity axis(with cavity under protective gas)
 - 4-3 Leak test of He tank
 - 4-4 Storage of cavity in SM18 clean room cabinet.

- 5th Stage
 - 5-1 Assembling of the string of the 4 cavities in SM18 clean room with the pickup probes, couplers and gate valves.
 - 5-2 Pumping, leak test and baking in SM18 clean room.
- 6th Stage
 - 6-1 Assembling tuner.
 - 6-2 Assembling full cryo-module outside clean room.
 - 6-3 Horizontal cold test in bunker.

- Designed for ideal shape
- Manufactured at warm (+ processing)
- Has to work at the right frequency at cold (2 K)
- It deforms at cold during functioning (Lorentz forces, helium pressure fluctuation)

- It deforms at cold during functioning
 - Deformation limited by the cavity design (wall thickness, reinforcement rings)
 - Also limited by a proper helium tank and tuner design (as boundary conditions for the cavity)

Helium tank

- Heat load to superfluid helium extraction
- Boundary condition to cavity => Stiffness
- Material choice
 - Interfaces
 - Tuning principle + tuner range

Helium tank – heat load extraction

• Operation point: saturated He II at 2 K

CÊRN

Helium tank – heat load extraction

Heat flux in He II depend on bath temp. and channel dimension

Helium tank – heat load extraction

 Heat load from 0.8 – 1.5 W/cm² => Tank dimensions accordingly to extract dynamic heat load 20 W

 Helium tank + tuner act as boundary conditions to cavity => different stiffness gives different deformation of cavity due to Lorentz forces

- Zero tank + tuner stiffness equivalent to free-free BC for cavity
- Infinite tank + tuner stiffness equivalent to fix-fix BC for cavity

Helium tank – BC to cavity

Lorentz detuning => min helium tank stiffness 100 kN/mm

Calculated SS tank stiffness 130 kN/mm

Helium tank – material choice

- Interfaces
 - Titanium helium tank
 - Nb to Ti
 - Ti to SS
 - Stainless steel helium tank
 - Nb to SS

- Niobium to titanium
 - DESY XFEL choice:
 - EB welding Nb to NbTi and NbTi to Ti grade 2
 - NbTi flanges
 - Choice motivated by the stability of the mechanical properties after HT at 1400°C
 - Heat treatment no longer at 1400°C but at 800°C A properly selected Titanium (cheaper) could be then a valid option (instead of NbTi)
 - The grade 5 Titanium Ti6Al4V (alloy) for flanges and transition to helium tank

Helium tank – material choice

Niobium to titanium grade 5 (Ti6Al4V) **EB** welding successfully tested before and after heat treatment at 800 C

OC, 3/Mai/2012

- Titanium to stainless steel
 - By flange connection

CF flange SS 316LN + OFE copper + CF flange Ti6Al4V, liquid nitrogen tests

OC, 3/Ma

• Niobium to stainless steel - vacuum brazing

Brazing Nb / SS 316 LN is a key technology Developed at CERN in 1987

Difference in thermal expansion of Nb/SS Nb tube fitted to SS flange Clearance ≤ 20 µm SS plug to expand the Nb Pure Cu filler metal Brazing temperature 1100°C, ∆_{time} << P< 10° mbar

- Baseline for cavities developed at CERN Stainless steel helium tank
 - Differential thermal contraction between cavity and helium tank during cool-down

Material properties

Helium tank – material choice

Thermal contraction deformation during cool-down

Final deformed shape of the assembly @ 2K

Marco Esposito, CERN

Helium tank – material choice

Thermal stresses during cool-down

OC, 3/Mai/2012

Helium Tank manufacturing

Francois Pillon, Thierry Renaglia, CERN²

Helium Tank manufacturing

Helium Tank manufacturing

Tuning

- Cavity manufactured at warm but has to function at required frequency at cold – tuning process:
 - Each dumb-bell trimmed after RF measurement
 - Complete cavity tuned cell by cell at warm

• Cavity tuned at cold using the tuner

Tuner

- Developed and manufactured by CEA
 - 8 tuners in total will be provided by CEA (ready for delivery)
 - 1 set already at CERN

lrfu

œ

Developed by CEA

Tuning system requirements

saclay Can be corrected with room temperature tuning using plastic deformation:

- Fabrication tolerances
- Main cavity treatments :
 - 800°C heat treatment against Q desease,
 - First heavy chemical treatment (150 to 200 μm)
- Field inbalance between cells

Guillaume Devanz, CEA, 3rd SPL collaboration meeting

Has to be corrected with the cold tuner:

- The remaining error of the room temperature tuning
- The effect of the last chemical treatments
- The differential shrinkage of materials of the cavity, He vessel and tuner
- He Pressure, Lorentz detuning,

However:

 Last points (diff. Shrinkage) can be taken into account for series cavities after the full test of the first prototype

RANGE? (also operation/commissioning of the accelerator) G. Devanz CEA-Saclay, SPL 3rd coll meeting

Tuner

Developed by CEA

Irfu CEC saclay

Saclay piezo tuner for 700MHz cavities

- ·Slow tuner with symmetric action
- Excentric/lever arm provenSaclay design
- Planetary gear box (3 stages)
- Single NOLIAC 30mm piezo actuator
- Stiffness measured on the tuner pneumatic jack = 35 kN/mm
- Initially developed for the beta=0.5 5cell cavity

G. Devanz CEA-Saclay, SPL 3rd coll meeting

Guillaume Devanz, CEA, 3rd SPL collaboration meeting

CERN

Tuner

The provided set is under test and "familiarization" at CERN

OC, 3/Mai/2012 S HBM® – WI +/- 2.5mm DAQ QuantumX from HBM ® – Fs 50 Hz

CERN

Tuner

The provided set is under test and "familiarization" at CERN

catmanEasy License pour hautes écoles

- Cavities
 - Several cavity developments all over the world, related to the SPL project
 - They will be tested independently by each collaborator in their own testing facilities
 - Cavities to be installed in the SPL cryo-module will be provided by CERN by end of 2012:
 - 4 manufacturing ongoing in industry (RI)
 - 1 (spare) manufacturing ongoing at CERN
- Copper cavities under manufacturing at CERN for HOM tests and identification of possible difficulties

- Helium tank
 - Baseline at CERN: Stainless Steel
 - Design finalised
 - Will be passed for manufacturing to CEA
- Tuning
 - Tuning process to be confirmed after manufacturing tolerances and tuning results for copper cavities
 - Familiarization with CEA tuner ongoing at CERN; still several points to be clarified with our colleagues from CEA