

ESS elliptical cavity activities at CEA-Saclay

Juliette Plouin, Guillaume Devanz

- Cavity RF/mechanical design
- Helium tank
- High Order Modes/extraction
- Power coupler
- Tooling and equipments
- Milestones

- 5-cell cavities, bulk niobium
- two beta families
- frequency = 704.42 MHz
- performance specifications (T = 2 K):

•Peak field specifications : Epk < 40 MV/m

beta	Eacc VT (MV/ m)	Eacc Linac (MV/m)	Qo @ nominal Eacc
0.70	17	15	5e9
0.90	20	18	6e9

8 equipped superconducting high beta cavity :

design, fabrication and tests

- Elliptical 5-cells 704.42 MHz cavity ($\beta = 0,86$)
- Fundamental power couplers
- High Order Modes couplers
- Cold tuning systems
- Magnetic shields

D

- Cavity RF/mechanical design
- Helium tank
- High Order Modes/extraction
- Power coupler
- Tooling and equipments
- Milestones

SPALLATION RF design of high beta cavities : cells

Mode fondamental @704,42 MHz

Advantages of high cell to cell coupling for $\mathrm{TM}_{\mathrm{01}}$:

- easier to obtain field flatness, control over peak fields distribution among cells
- more consistent Qext across cavities
- enhanced mode separation between π and $4\pi/5$ modes
- HOM also better coupled to the outer cells (needed for damping)

	RF frequency	704.42 MHz
RS	Cavity geometrical beta	0.86
Щ	Accelerating gradient	18 MV/m
M	Q_0 at nominal field	> 6 10 ⁹
RA	Maximum surface E field	40 MV/m
A	Average pulse current	50 mA
Z	Peak RF power	900 kW
S	Repetition frequency	14 Hz
D	Beam pulse length	2.86 ms
	Operating Temperature	2 K

(0)	Bpk/Eacc [mT/(MV/m)]	4.3
Ш	Epk/Eacc	2.2
Ш	G [Ohm]	241
AM	Cell to cell coupling	1.8 %
AR	r/Q [Ohms]	477
	L _{acc} = Ngap.β.λ/2 [m]	0.915
₽ ₽	Cell wall angle	> 8°

• Lc can be reduced to 30 mm

•Qext could be decreased of 15% with a conical antenna tip

✓ **HOM propagation :**140 mm diameter is more favourable

		Cutoff frequencies (GHz)													
Diamètre (mm)	TE11	TM01	TE21	TM11	TE01	TE31	TM21								
130	1.3535	1.7683	2.2405	2.8143	2.8143	3.0769	3.7831								
140	1.2568	1.6420	2.0804	2.6132	2.6132	2.8571	3.5129								

Réduction de K _L avec des anneaux	
Nominal wall thickness [mm]	3.6
Cavity stiffness Kcav [kN/mm]	2.59
Tuning sensitivity $\Delta f/\Delta z$ [kHz/mm]	197
K_L with fixed ends [Hz/(MV/m) ²]	-0.36
K_L with free ends [Hz/(MV/m) ²]	-8.9
Pressure sensitivity K_P [Hz/mbar] (fixed ends)	4.85

Saclay-V tuner concept adapted to the ESS cavity Fast/slow tuner (with piezo)

> SPL tuner

We foresee a pressure test of the He tank/cavity will be carried out for certification (similar to TUV test for X-FEL cavities)

Simulation of cavity deformation with a *plastic* model, 3.6 mm thickness

- The differential pressure is cycled : 0-5-0 bars
- external rig used to maintain cavity length : fixed ends
- max residual deformation after 1 cycle : $7\mu m$ for 1 cycle, detuning 560 Hz

- Cavity RF/mechanical design
- Helium tank
- High Order Modes/extraction
- Power coupler
- Tooling and equipments
- Milestones

5 mm thick Ti tank Stiffness = 70 kN/m Longitudinal mechanical modes with RF frequency deviation:

Simulation of Lorentz detuning transfer function

- Cavity RF/mechanical design
- Helium tank
- High Order Modes/extraction
- Power coupler
- Tooling and equipments
- Milestones

All HOM have been identified up to 2 GHz, with r/Q calculated

2 monopolar modes identified around 1420 MHz. Closest machine line at 1408,8MHz= 2x704.4 MHz, i.e. 1 11.2 MHz appart. Matching the mode and the machine line would require a cavity elongation of 28 mm

SPALLATION HOM damping by power coupler

Electric field amplitude (logscale) – 1420 MHz

F (MHz)	Matched termination	Doorknob + WG
1 420 300	1.58e5	4.06E+05
1 421 018	4.30e3	2.38E+04
1 431 633	3.22e4	6.36E+05
1 442 796	3.30e4	1.27E+06
1 456 101	4.41e4	5.05E+05
1 480 038	1.98e4	1.29E+05
1 491 485	1.33e4	2.03E+05
1 505 199	1.40e4	4.99E+05
1 518 257	1.87e4	1.94E+05
1 527 899	4.57e4	6.08E+05

The coupler is fully modeled, but the transmission characteristics of the high power waveguide network are unknown. Here, the rectangular WG is terminated by a lossy short.

EUROPEAN SPALLATION HOM couplers conceptual design

Desy type, Ø 50 mm for the internal diameter of the port

characteristics on a single cell

SOURCE HOM couplers conceptual design

CERN-Saclay type, Ø 50 mm for the internal diameter of the port

Single cell mode	Single cell Qext
FM	4.4e10
M1	3.4e4
M2	6.0e3

Study is on-going, FM Qext aimed at for rejection is 1e12 on the 5-cell cavity (in this example FM Qext = 2e11)

Both types of HOM couplers show the possibility of fundamental mode rejection Two HOM ports (with relative angle *now* 105°) are included in the prototype cavities

- Cavity RF/mechanical design
- Helium tank
- High Order Modes/extraction
- Power coupler
- Tooling and equipments
- Milestones

704.42
14
2.86
< 900
1200

✓ Starting from Saclay HIPPI 1MW 10%DC coupler (KEK type window)

 ✓ HIPPI couplers validated up to 1.2 MW (P_{avg}=120kW) and with 704 MHz cavity in Cryholab (1 MW full reflexion)

Current activities:

Evaluation of maximum
admissible peak power of Saclay
HIPPI power coupler in SW and
TW regime

 Starting thermo-mechanical calculations for air cooling assessment (tested up to 25kW average power, full reflection in horizontal cryostat)

Study of antenna HV biasing started

- Cavity RF/mechanical design
- Helium tank
- High Order Modes/extraction
- Power coupler
- Tooling and equipments
- Milestones

New Saclay vertical EP station: commissionned with 1.3 GHz single cell

SPALLATION ESS high beta cryomodule technical demonstrator

The design and assembly of a 4 cavities cryomodule is planned at CEA and **IPNO**

A new clean room will be build at Saclay, with dimensions adapted for the assembly of a 4 ESS cavities string

Saclay cryomodule test bunker

SPALLATION Instrumentation: 2nd sound device

The **4 OSTs** are positionned in the plane of cavity equator The 1300 MHz monocell cavity is also equipped with a CEA rotative **temperature map** system

Signal on the oscillo Tek Run: 10.0kS/s Sample The **red dot** is the quench position measured by cuisor Function temperature mapping Quench Off The green dot is the quench position from OSTs #2 and #3 and optimization calculations OST#2 H Bars ⇒ More details and discussion in Kitty Liao's presentation V Bars OST#3 At₂ ↓ † Paired OST # 2 Δt, OST#4 Ch1 20.0mVΩ Ch2 200mVΩ M5.00ms +37mV cavity Amplitude Units Time Units Tentative Function V Bars Mode Indep seconds Base OST#4 triangulation Quench localization by 2nd sound method will be developped in order to be used for multicell cavities OST # 3

ESS elliptical cavity activities at CEA-Saclay

- Cavity RF/mechanical design
- Helium tank
- High Order Modes/extraction
- Power coupler
- Tooling and equipments
- Milestones

EUROPEAN SPALLATION SOURCE MILESTONES

	2010	2011			2011 2012						2013				2014				2015				2016			
	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	
Kick Off																										
1st Nb order																										
2 cavities order																										
2 cavities delivery																										
2 cavities test																										
Power coupler order																										
2nd Nb order																										
HOM coupler order																										
HOM coupler delivery																										
6 cavities order							1				1															
Power coupler test							5	61100	1000		0															
6 cavities delivery					3	1000	0.0																			
Last cavity test				U	Ð	J																				

A new plan is now proposed in order to have 4 fully equiped cavities available in 2014 for the cryomodule technical demonstrator assembly (tested at Saclay in 2015)