

WU2 - Proton Source & LEBT

L. Celona, S. Gammino, D. Mascali, L.Neri

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud

Requirements

Proton source

Based on knowledge acquired with TRIPS, SILHI and VIS high intensity proton sources

	Status	
Beam energy	80 keV	
Proton current	55 mA	
Proton fraction	≈80%	
PE nower Frequency	Up to 1 kW @ 2.45	
Kr power, rrequency	GHz	
Axial magnetic field	875-1000 G	
Duty factor	100% (dc)	
Extraction aperture	6 mm	
Poliability	99.8% @ 35mA	
Reliability	(over 142 h)	
Beam emittance at RFQ	0.07πmmmrad @	
entrance	32 mA	

TRIPS

Movable magnetic system composed by two solenoids
Five electrodes extraction system

SOURCE TRIPS emittance and reliability

Parameter	
Extraction voltage	80 kV
Puller voltage	42 kV
Repeller voltage	-2.6 kV
Discharge power	435 W
Beam current	35 mA
Mass flow	≈0.5 sccm

Availability over 142h 25'= 99.8 %

I=90mA Vextr=85 kV (φ=9mm)

EUROPEAN

SPALLATION SOURCE

Emittance [π mm mrad]

	10 ms	5 ms	3 ms	2.5 ms	2 ms	1.5 ms	1 ms
10 Hz	0.166	0.156	0.152	0.152	0.156	0.148	0.145
20 Hz		0.162	0.152	0.153	0.144	0.143	0.116
30 Hz		0.144	0.144	0.142	0.142	0.138	0.13
40 Hz		0.148	0.148	0.142	0.134	0.129	0.146

R. Miracoli et al., accepted to RSI

Opera

EUROPEAN

SPALLATION SOURCE

- 1. "Simple mirror";
- 2. "Magnetic Beach"
- 3. "Off-Resonance configuration"

	Inj	Med	Ext
Simple mirror	400	-300	400
Off resonance	155	120	170
Mag. Beach	260	0	0

Microwave coupling study

EUROPEAN

SPALLATION SOURCE

Beam extraction

Five-electrode topology (TRIPS, SILHI)

- on-line optimisation of the extracted beam
- wide range of operations
- alignment issues of the overall geometry
- biasing system needed for the intermediate electrode

Four-electrode topology (VIS, LANL)

- optimized for a narrow range of operating current
- no alignment problems
- no biasing system

PS-ESS beam extraction

Itot= 98.55 mA (H+=90%; H2+=10%)

EUROPEAN

SPALLATION SOURCE

PS-ESS beam extraction

Alpha =-10.2955 Beta = 1.9033

EUROPEAN

SPALLATION SOURCE

Proton beam emittance rms norm. @ 0.14 m = 0.126 pi mm mrad

AXCEL Beam output @ 0.14 m has been used as input for TRACEWIN simulations.

EUROPEAN SPALLATION SOURCE

TRACEWIN simulations

PlotWin - CEA/DSM/Irfu/SACM

Emit [rms] = 0.1260 Pi.mm.mrad [Norm.] Beta = 0.6099 mm/Pi.mrad ; Alpha = -3.2980 H⁺ current = 89 mA ; Energy = 75KeV

See poster of L. Neri et al.

scc1=95% ; scc2=0% chopper=ON

See poster of L. Neri et al.

EUROPEAN

SPALLATION SOURCE

EUROPEAN SPALLATION SOURCE

EUROPEAN

SPALLATION SOURCE

PlotWin - CEA/DSM/Irfu/SACM

Emit [rms] = 0.2145 Pi.mm.mrad [Norm.] Beta = 0.0687 mm/Pi.mrad Alpha = 1.5843

See poster of L. Neri et al.

EUROPEAN SPALLATION SOURCE

Chopping strategies

Requirements

- > Small size
- > Rise and fall time less than 100ns
- > Repetition rate 14Hz
- > Beam energy 75keV
- > 100% transmission for a beam size of ±25mm and ±20mrad

CANDIDATE

Chopper after the second solenoid

(criticalities observed due to the restricted space available)

- > Same mechanical design, but smaller size because the collimator at the RFQ entrance can be used as slit
- > A smaller beam is expected after the second solenoid and the chopping voltage could be smaller
- > More space available for diagnostics in the box within the solenoids
- > Beam pulse timing can be checked only after the collimator
- > SCC studies still needed

OUTSIDERS

- Chopper and slit between the two solenoids
- Solution with Wien Filter

Isosurface at 4kV

Plate bending angle of 20° for a flat transversal filed

Total length 70cm

Electronics

- Built at INFN-LNS and already delivered to GANIL for SPIRAL 2
- Now installed at 5 mA deuteron source testbench at CEA-IRFU.
- NO SPACE CHARGE ISSUES OBSERVED

Measured performance (acquisitions at 10 kV):

- ✓ rise and fall time of 13-15 ns (A,B);
- ✓ up to 1.3 kHz of repetition rate (C);

Yellow= HV signal Blue= TTL driver Purple= pick-up signal

Expectations & Criticalities

•We are confident to achieve the expected beam current in the required emittance (minor crit. due to the lower operating voltage)

•The reliability issue can be addressed by a proper choice of the magnetic field together with the optimization of the extraction system.

•Layout LEBT under optimization.

•Beam evolution in the 10 us time window needed to restore space charge compensation. Roadmap: calculations and measurements on the source.

•SCC tests will be carried out at CEA-IRFU within the fall of the year.

Proton source & LEBT

ADU_1.6.2.1.1	Magnetic system design	12/12/2011 → 5/3/2012
ADU_1.6.2.1.4	RF system design	22/6/2012 → Yet done
ADU_1.6.2.1.7	HV system design	20/2/2012→ 31/3/2012
ADU_1.6.2.2.2	LEBT design	9/4/2012 → 10/5/2012

ADU_1.6.2.2.2	LEBT design completion	$2/5/2012 \rightarrow \text{Tbd},$ manpower criticality
ADU_1.6.2.2.9	Chopper design	30/1/2012 → 10/3/2012
ADU_1.6.2.2.8	Requirement document	31/1/2012 → Yet done
ADU_1.6.2.2.1	Diagnostics	28/5/2012 \rightarrow Tbd, manpower criticality

