NNbar via sterile states of neutron – a new type of search

by Zurab Berezhiani

L'Aquila U and LNGS/INFN He is feeling crook in his travel

His talk from his words is reproduced by Yuri Kamyshkov. Any wrong statements and errors are Y.K. faults

Ordinary matter	NEW $n \rightarrow \bar{n}$	Mirror matter
$\stackrel{\text{Old}}{\stackrel{\uparrow}{\scriptstyle \text{mixing}}} \binom{n}{\bar{n}}$	New ← Mixing →	$egin{pmatrix} n' & ext{Old} \ ar{n}' \end{pmatrix} \stackrel{ ext{Old}}{\mathop{\pi}\limits^{ imes}}_{ ext{mixing}}$
$n\leftrightarrow \overline{n}$	$\begin{array}{c} \textbf{previously discussed}\\ n \leftrightarrow n'\\ n \leftrightarrow \bar{n}' \end{array}$	$n' \leftrightarrow \overline{n}'$
	$\overline{n} \leftrightarrow n'$ $\overline{n} \leftrightarrow \overline{n}'$	

$$n \equiv \begin{pmatrix} n \\ \overline{n} \\ n' \\ \overline{n}' \end{pmatrix} \text{ mixed - in components}$$

$$n_{\text{initial}} \rightarrow n_{\text{final}}$$
Final states
$$n \quad \overline{n} \quad n' \quad \overline{n'}$$

$$n \quad \overline{n} \quad n' \quad \overline{n'}$$

$$n \quad 1 \quad \epsilon \quad \alpha \quad \beta$$

$$\overline{n} \quad \epsilon \quad 1 \quad \beta \quad \alpha$$

$$\overline{n'} \quad \alpha \quad \beta \quad 1 \quad \epsilon$$

$$\overline{n'} \quad \alpha \quad \beta \quad 1 \quad \epsilon$$

$$\overline{n'} \quad \beta \quad \alpha \quad \epsilon \quad 1$$

4-component neutron mixing in measurements

$$\psi_{n}(t) = \begin{pmatrix} n \\ \overline{n} \\ n' \\ \overline{n}' \end{pmatrix} \qquad \psi_{n}(t=0) = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} n \\ \overline{n} \\ n' \\ \overline{n}' \end{pmatrix} = \begin{pmatrix} E & \epsilon & \alpha & \beta \\ \epsilon & E & \beta & \alpha \\ \alpha & \beta & E & \epsilon' \\ \beta & \alpha & \epsilon' & E \end{pmatrix} \begin{pmatrix} n \\ \overline{n} \\ n' \\ \overline{n}' \end{pmatrix}$$

 $P_{n \to \bar{n}} = P(\epsilon, \alpha, \beta)$

4 eigenvalues of energy

Some interesting details

- Parameter ε belongs to the OM world; the same way parameter ε' belongs to MM world, whereas α and β are responsible for exchange between OM and MM. So, ε-ε' and α-β corresponds to two different kinds of physics BSM.
- Hierarchy of magnitudes of α and β is not known. Naively one can think that $\alpha > \beta$. Berezhiani states that $\alpha = \beta$ is not possible. In the model, where Dark Matter is Mirror antimatter, it can be that $\beta > \alpha$. There are no good arguments that one is \ll than another, e.g. can be as small as ϵ .
- Note, that in the first and second rows of matrix $\mathcal{H}_0 \alpha$ and β are assumed to be the same. That is according to the assumption that for $\alpha: n \to n' = \overline{n} \to \overline{n}'$ and for $\beta: n \to \overline{n}' = \overline{n} \to n'$. That is kind of C-symmetry. In the rows 3 and 4 same α means: $n' \to n = \overline{n}' \to \overline{n}$; and same $\beta: \overline{n}' \to n = n' \to \overline{n}$ that are time inverted to the processes in rows 1 and 2.
- Another important note: complex mixing matrix \mathcal{H}_0 with 4×4 parameters should include several CP violating phases (assume Berezhiani will explore that).

State	$\Delta \boldsymbol{\mathcal{B}} = \boldsymbol{\mathcal{B}}_f - \boldsymbol{\mathcal{B}}_i$	$\Delta {m {\mathcal B}}'$	$\Delta(\boldsymbol{\mathcal{B}}+\boldsymbol{\mathcal{B}}')$	mixing
$n \to \overline{n}$	-2	0	-2	ϵ
$n \rightarrow n'$	-1	+1	0	α
$n \to \overline{n}'$	-1	-1	[▲] -2	β

Starting with n, what can be observed in vacuum oscillations? Time evolution can be found by solving time dependent Schrödinger eq. with 4×4 Hamiltonian.

Final states				s		it measured
~	n		n'		$n \rightarrow n \rightarrow n$	$P \sim 1$
			α		$n ightarrow n ightarrow \overline{n}$	$P \sim (1 \cdot \epsilon)^2$
${n \over u}$			ß		$n \to \overline{n} \to \overline{n}$	$P \sim (\epsilon \cdot 1)^2$
tial s n^\prime			•		$n ightarrow n' ightarrow \overline{n}$	$P \sim (\alpha \cdot \beta)^2$
$\bar{\bar{n}}$ \bar{n}'					$n \to \overline{n}' \to \overline{n}$	$P \sim (\beta \cdot \alpha)^2$

If final state is not measured, the system remains entangled. Oscillations continue. After "measurement" given state can continue oscillations. Like 3 ν flavors.

If money red

 $(|\alpha|^2 + |\beta|^2)$ measured by disappearance $n \rightarrow n', \overline{n}'$

Solution for probability $P_{n \to \overline{n}}(t)$ with Hamiltonian \mathcal{H}_0 in vacuum will include direct transformation $n \to \overline{n}$ (through ϵ) and higher order free oscillations $n \to n' \to \overline{n}$ and $n \to \overline{n'} \to \overline{n}$ with total probability

$$P_{n \to \bar{n}}(t) = \frac{\epsilon^2 t^2}{\hbar^2} + \frac{2\alpha^2 \beta^2 t^4}{\hbar^4}$$

Taking for example, limiting values for $\epsilon < 2.76 \times 10^{-24} eV$ (Super-K) and for disappearance (in some range of *B*: $\tau \ge 10 s$) $(\alpha^2 + \beta^2) < (6.6 \times 10^{-17})^2$, assuming also that $\beta/\alpha \approx 0.01$, and probability is measured after 1 s of flight (from above formula):

$$P_{n \to \bar{n}}(t = 1 \, s) \lesssim 10^{-17} + 10^{-8}$$

- $P_{n \to \overline{n}}(t) = P(\epsilon, \alpha, \beta)$
- Current limit for $P_{n \to \overline{n}}$ is usually assigned to ϵ only
- What if ϵ is very-very small, but α and β are large?
- $P_{n \to \overline{n}}(t) = P(0, \alpha, \beta) = P(\alpha, \beta)$
- What we call a "vacuum" for the absence of magnetic field **B**, is not a vacuum for mirror magnetic field **B**'
- For n → n
 experiments performed in our "vacuum"

 O-field the yield of n
 might be suppressed by mirror magnetic field.
- If large neutron mirror neutron oscillations real, the existing ILL $n \rightarrow \overline{n}$ limit $\tau \ge 8.6 \times 10^7 s$ might mean nothing for process going through sterile states

$n \rightarrow \overline{n}$ via regeneration in resonance

- Compensating B' by B we might see large yield of \overline{n} :
- <u>First stage</u>: disappearance $n \rightarrow n'$ or $\overline{n}' \quad (\alpha^2 + \beta^2)$ (assuming direct $n \rightarrow \overline{n}$ is small $\epsilon = 0$) to establish that effect can happen with measured sensitivity for given B' = B
- <u>Second stage experiment</u>: Absorption of the remaining neutron beam, then in mag. field
- Regeneration $n' \to \overline{n} \ (\beta^2)$ and $\overline{n}' \to \overline{n} \ (\alpha^2)$
- Total probability 2 $\alpha^2 \beta^2$ in the resonance when |B' B| = 0

What happens inside nuclei?

$$\tau_A = R\tau_{n\to\bar{n}}^2 = R\frac{1}{\epsilon^2}$$

OLD $n \rightarrow \overline{n}$ in nuclei:

suppression factor $R = R_A \cong 5 \times 10^{22} s^{-1}$

From $\tau_A = 1.9 \times 10^{32} yrs$ Super-K experiment extracted $\tau_{n \to \bar{n}} > 2.7 \times 10^8 s$

NEW $n \rightarrow n' and n \rightarrow \overline{n}$ in nuclei

$$n \rightarrow n' ~ \sim \alpha^2$$

It is impossible inside nuclei due to energy conservation

Second order (like $2\beta 0\nu$) process possible: $n_1 \rightarrow \overline{n}'; n_2 \rightarrow n'; \overline{n}' + n' \rightarrow \langle 5 \rangle \pi'$ but will have oscillation time $\tau \sim R^2 \frac{1}{2\alpha^2 \beta^2}$

Some Conclusions

It is possible to consider, as not excluded scenario, if neutron to mirror neutron transformations exist, then

- $\epsilon \cong 0$, no direct $\Delta B = 2$ transformations exist, but
- $n \rightarrow \overline{n}$ might happen through oscillations to mirror world states
- it can be seen as $2 \alpha^2 \beta^2$ if $B \neq B'$ suppression is removed in the beam of neutrons (like in NNbar experiment).
- it can be seen also in regeneration as $2 \alpha^2 \beta^2$ producing pure \bar{n}
- Then the n → n
 through sterile states might be not observable in previously though NNbar experiment with B = 0, also will not be seen in intranuclear process.
- It seems that this simple experiment should be tried before big NNbar.