NNbar via sterile states of neutron - a new type of search

by Zurab Berezhiani
L’Aquila U and LNGS/INFN
He is feeling crook in his travel

His talk from his words is reproduced by Yuri Kamyshkov. Any wrong statements and errors are Y.K. faults

NEW $n \rightarrow \bar{n}$

Ordinary matter

Mirror matter

New
\leftarrow Mixing \rightarrow
previously discussed
$n \leftrightarrow \bar{n}$

$n^{\prime} \leftrightarrow \bar{n}^{\prime}$
$\boldsymbol{n} \equiv\left(\begin{array}{c}n \\ \bar{n} \\ n^{\prime} \\ \bar{n}^{\prime}\end{array}\right)$ mixed - in components

$\boldsymbol{n}_{\text {initial }} \rightarrow \boldsymbol{n}_{\text {final }}$

Final states

	n	\bar{n}	n^{\prime}	\bar{n}^{\prime}
	1	ϵ	α	β
$\stackrel{\text { \# }}{\sim}$	ϵ	1	β	α
$\frac{\stackrel{n}{0}}{\stackrel{\rightharpoonup}{ \pm}} n^{\prime}$	α	β	1	ϵ
ㄷ \bar{n}^{\prime}	β	α	ϵ	1

4-component neutron mixing in measurements

$$
\begin{gathered}
\psi_{n}(t)=\left(\begin{array}{c}
n \\
\bar{n} \\
n^{\prime} \\
\bar{n}^{\prime}
\end{array}\right) \quad \psi_{n}(t=0)=\left(\begin{array}{c}
1 \\
0 \\
0 \\
0
\end{array}\right) \\
i \hbar \frac{\partial}{\partial t}\left(\begin{array}{c}
n \\
\bar{n} \\
n^{\prime} \\
\bar{n}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
E & \epsilon & \alpha & \beta \\
\epsilon & E & \beta & \alpha \\
\alpha & \beta & E & \epsilon^{\prime} \\
\beta & \alpha & \epsilon^{\prime} & E
\end{array}\right)\left(\begin{array}{c}
n \\
\bar{n} \\
\bar{n}^{\prime} \\
\bar{n}^{\prime}
\end{array}\right) \\
P_{n \rightarrow \bar{n}}=P(\epsilon, \alpha, \beta)
\end{gathered}
$$

4 eigenvalues of energy

Some interesting details

- Parameter ϵ belongs to the OM world; the same way parameter ϵ^{\prime} belongs to MM world, whereas α and β are responsible for exchange between OM and MM. So, $\epsilon-\epsilon^{\prime}$ and $\alpha-\beta$ corresponds to two different kinds of physics BSM.
- Hierarchy of magnitudes of α and β is not known. Naively one can think that $\alpha>$ β. Berezhiani states that $\alpha=\beta$ is not possible. In the model, where Dark Matter is Mirror antimatter, it can be that $\beta>\alpha$. There are no good arguments that one is << than another, e.g. can be as small as ϵ.
- Note, that in the first and second rows of matrix $\mathcal{H}_{0} \alpha$ and β are assumed to be the same. That is according to the assumption that for $\alpha: n \rightarrow n^{\prime}=\bar{n} \rightarrow \bar{n}^{\prime}$ and for $\beta: n \rightarrow \bar{n}^{\prime}=\bar{n} \rightarrow n^{\prime}$. That is kind of C-symmetry. In the rows 3 and 4 same α means: $n^{\prime} \rightarrow n=\bar{n}^{\prime} \rightarrow \bar{n}$; and same $\beta: \bar{n}^{\prime} \rightarrow n=n^{\prime} \rightarrow \bar{n}$ that are time inverted to the processes in rows 1 and 2.
- Another important note: complex mixing matrix \mathcal{H}_{0} with 4×4 parameters should include several CP violating phases (assume Berezhiani will explore that).

State	$\Delta \mathcal{B}=\mathcal{B}_{f}-\mathcal{B}_{i}$	$\Delta \mathcal{B}^{\prime}$	$\Delta\left(\mathcal{B}+\mathcal{B}^{\prime}\right)$	mixing
$n \rightarrow \bar{n}$	-2	0	-2	ϵ
$n \rightarrow n^{\prime}$	-1	+1	0	α
$n \rightarrow \bar{n}^{\prime}$	-1	-1	-2	β

Starting with n, what can be observed in vacuum oscillations? Time evolution can be found by solving time dependent Schrödinger eq. with 4×4 Hamiltonian.

Final states						If measured
\sim	n	\bar{n}		\bar{n}^{\prime}	$n \rightarrow n \rightarrow n$	
	1	ϵ	α	β	$n \rightarrow n \rightarrow \bar{n}$	$P \sim(1 \cdot \epsilon)^{2}$
㚱 \bar{n}	ϵ	1	β	α	$n \rightarrow \bar{n} \rightarrow \bar{n}$	$P \sim(\epsilon \cdot 1)^{2}$
号 n^{\prime}	α	β			$n \rightarrow n^{\prime} \rightarrow \bar{n}$	$P \sim(\alpha \cdot \beta)^{2}$
\bar{n}^{\prime}	β	α	ϵ	1	$n \rightarrow \bar{n}^{\prime} \rightarrow \bar{n}$	$P \sim(\beta \cdot \alpha)^{2}$

If final state is not measured, the system remains entangled. Oscillations continue. After "measurement" given state can continue oscillations. Like $3 v$ flavors.

$\left(|\alpha|^{2}+|\beta|^{2}\right)$ measured by disappearance $n \rightarrow n^{\prime}, \bar{n}^{\prime}$

Solution for probability $P_{n \rightarrow \bar{n}}(\mathrm{t})$ with Hamiltonian \mathcal{H}_{0} in vacuum will include direct transformation $n \rightarrow \bar{n}$ (through ϵ) and higher order free oscillations $n \rightarrow n^{\prime} \rightarrow \bar{n}$ and $n \rightarrow \bar{n}^{\prime} \rightarrow \bar{n}$ with total probability

$$
P_{n \rightarrow \bar{n}}(t)=\frac{\epsilon^{2} t^{2}}{\hbar^{2}}+\frac{2 \alpha^{2} \beta^{2} t^{4}}{\hbar^{4}}
$$

Taking for example, limiting values for $\epsilon<2.76 \times 10^{-24} \mathrm{eV}$ (Super-K) and for disappearance (in some range of $B: \tau \gtrsim 10 s$) $\left(\alpha^{2}+\beta^{2}\right)<\left(6.6 \times 10^{-17}\right)^{2}$, assuming also that $\beta / \alpha \approx 0.01$, and probability is measured after 1 s of flight (from above formula):

$$
P_{n \rightarrow \bar{n}}(t=1 s) \lesssim 10^{-17}+10^{-8}
$$

- $P_{n \rightarrow \bar{n}}(t)=P(\epsilon, \alpha, \beta)$
- Current limit for $P_{n \rightarrow \bar{n}}$ is usually assigned to ϵ only
- What if ϵ is very-very small, but α and β are large?
- $P_{n \rightarrow \bar{n}}(t)=P(0, \alpha, \beta)=P(\alpha, \beta)$
- What we call a "vacuum" for the absence of magnetic field \boldsymbol{B}, is not a vacuum for mirror magnetic field \boldsymbol{B}^{\prime}
- For $n \rightarrow \bar{n}$ experiments performed in our "vacuum" 0 -field the yield of \bar{n} might be suppressed by mirror magnetic field.
- If large neutron - mirror neutron oscillations real, the existing ILL $n \rightarrow \bar{n}$ limit $\tau \geq 8.6 \times 10^{7} s$ might mean nothing for process going through sterile states

$n \rightarrow \bar{n}$ via regeneration in resonance

- Compensating \boldsymbol{B}^{\prime} by \boldsymbol{B} we might see large yield of \bar{n} :
- First stage: disappearance $n \rightarrow n^{\prime}$ or $\bar{n}^{\prime}\left(\alpha^{2}+\beta^{2}\right)$ (assuming direct $n \rightarrow \bar{n}$ is small $\epsilon=0$) to establish that effect can happen with measured sensitivity for given $\boldsymbol{B}^{\prime}=\boldsymbol{B}$
- Second stage experiment: Absorption of the remaining neutron beam, then in mag. field
- Regeneration $n^{\prime} \rightarrow \bar{n}\left(\beta^{2}\right)$ and $\bar{n}^{\prime} \rightarrow \bar{n}\left(\alpha^{2}\right)$
- Total probability $2 \alpha^{2} \beta^{2}$ in the resonance when $\left|B^{\prime}-B\right|=0$

HIBEAM Experiment Layout at ESS for n disappearance measurement (2023-2027)

beam hole:
$11.2 \mathrm{~cm}(\mathrm{H})$
$7.0 \mathrm{~cm}(\mathrm{~V})$

- Beam shutter

intensity through dia 1 m @ 54 m is $6.4 \mathrm{E}+10 \mathrm{n} / \mathrm{s}$ ESS @ 1 MW

What happens inside nuclei?

OLD $n \rightarrow \bar{n}$ in nuclei:

$$
\begin{gathered}
n \rightarrow \bar{n} \quad \sim \epsilon^{2} \\
\bar{n}+N \rightarrow<5>\pi
\end{gathered}
$$

Intranuclear suppression:

$$
\tau_{A}=R \tau_{n \rightarrow \bar{n}}^{2}=R \frac{1}{\epsilon^{2}}
$$

suppression factor $R=R_{A} \cong 5 \times 10^{22} s^{-1}$
From $\tau_{A}=1.9 \times 10^{32} y r s$ Super-K experiment extracted $\tau_{n \rightarrow \bar{n}}>2.7 \times 10^{8} \mathrm{~s}$

NEW $n \rightarrow n^{\prime}$ and $n \rightarrow \bar{n}$ in nuclei

$$
n \rightarrow n^{\prime} \quad \sim \alpha^{2}
$$

It is impossible inside nuclei due to energy conservation

Second order (like $2 \beta 0 v$) process possible: $n_{1} \rightarrow \bar{n}^{\prime} ; n_{2} \rightarrow n^{\prime} ; \bar{n}^{\prime}+n^{\prime} \rightarrow<5>\pi^{\prime}$
but will have oscillation time $\tau \sim R^{2} \frac{1}{2 \alpha^{2} \beta^{2}}$

Some Conclusions

It is possible to consider, as not excluded scenario, if neutron to mirror neutron transformations exist, then

- $\epsilon \cong 0$, no direct $\Delta \mathcal{B}=2$ transformations exist, but
- $n \rightarrow \bar{n}$ might happen through oscillations to mirror world states
- it can be seen as $2 \alpha^{2} \beta^{2}$ if $\boldsymbol{B} \neq \boldsymbol{B}^{\prime}$ suppression is removed in the beam of neutrons (like in NNbar experiment).
- it can be seen also in regeneration as $2 \alpha^{2} \beta^{2}$ producing pure \bar{n}
- Then the $n \rightarrow \bar{n}$ through sterile states might be not observable in previously though NNbar experiment with $B=0$, also will not be seen in intranuclear process.
- It seems that this simple experiment should be tried before big NNbar.

