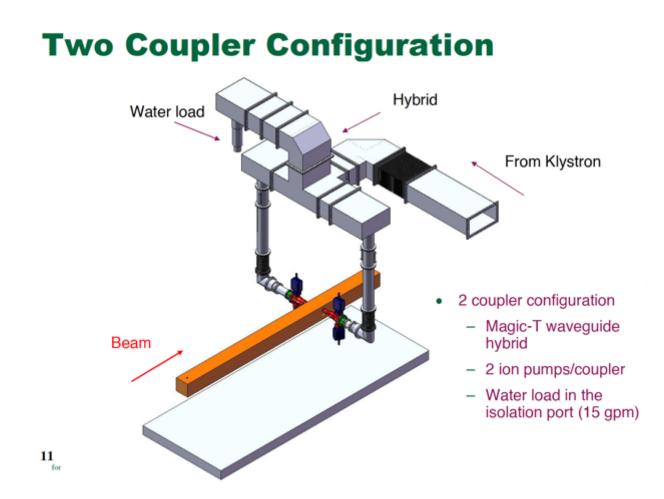


EUROPEAN SPALLATION SOURCE

Preparation for RFQ Conditioning

Rihua Zeng,


Jan 29, 2020

www.europeanspallationsource.se

Experience from SNS

EUROPEAN SPALLATION SOURCE

2

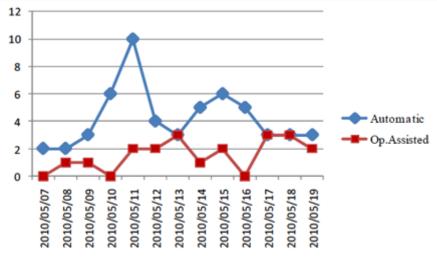
Experience from SNS

Summary

- New coupling system for the RFQ was important for the full beam power operation
- 2 coupler coupling system developed for the existing RFQ cavity
- 3 couplers procured and RF (50%) conditioned at RFTF in 2007
- New coupler design employs the ceramic window used in 805 MHz SNS/SRF cavity couplers
- New couplers installation completed as planned during the 2/4 3/23, 2008 shutdown period

_	Removal of old system	2/04 - 10 '08
_	Installation waveguides, couplers, supports	2/11 - 19 '08
_	Tuning & phase matching	2/20 - 28 '08

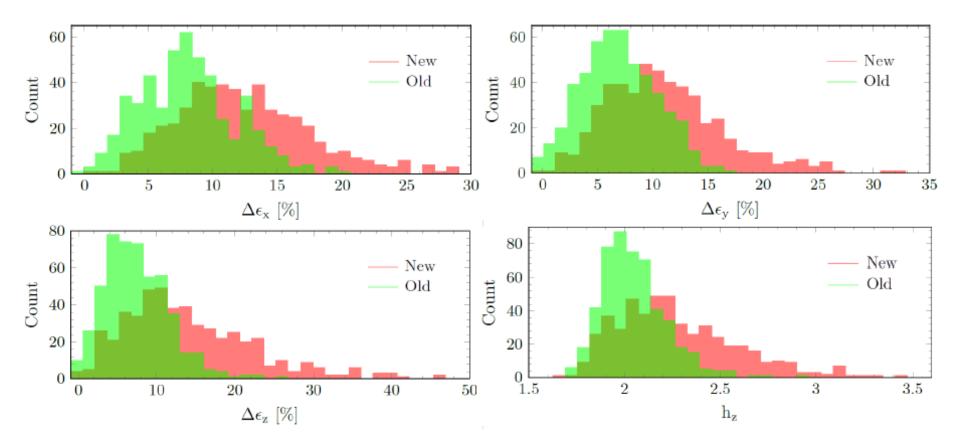
- Full RF testing/conditioning
 2/29 3/14 '08
- Coupling system has been fully conditioned on RFQ cavity at full power and duty cycle: ~ 900 kW, 1msec, 60 Hz
- H⁻ beam transmission through the RFQ has been tested and verified by accepting and measuring the beam at the MEBT beam stop
- 3 more spare couplers purchased and readied for RF conditioning



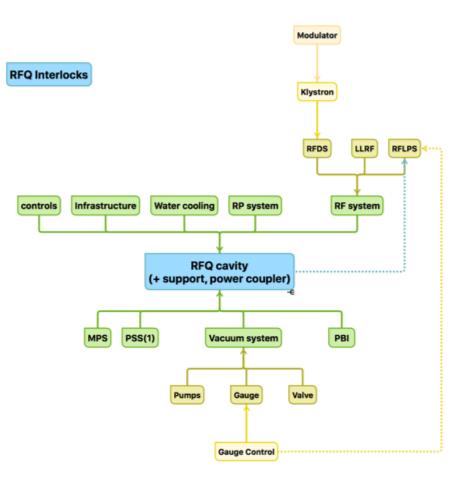
Experience from JPARC&CSNS


EUROPEAN SPALLATION SOURCE

	Event	RF/beam widths (us)	I- Peak (mA)	Pwr@ MLF (kW)	Conditi or Con op. day	ıt.
Sept. 2008	Trip rate increase	200/100	5		very poor	
Nov.	Improvement: interlock,condition	ning, etc.				
Dec.	MR study and MLF user program after conditioning	155/100	5	20	poor	
Jan. – Feb. 2009	Conditioning and operation user program was cancelled	155/100	5	20	poor	
Mar.	Vacuum system improvement: ion pumps, diagnostics					
June	MLF user program	155/100	5	20	2	
JulSept.				-free p	umps	1t. ys
Nov Jan.	MLF user program	255/200	15	120	2 to 3	3
Dec.	MLF high power demonstration (1hour)	555/500	15	300		13
Jan. 2010	Demonstration of continuous operation for 6 days	255-555 /200- 500	15	120	6	8
Feb Mar.	MR and HD/NU study, beam delivery	555/200 -500	15	can- celled	7 to	4
Arp May	MLF, MR(NU) beam delivery	555/200 -500	15	120	13(m	1



х


How 1% Field Flatness Affects/DTL Simulation

EUROPEAN SPALLATION SOURCE

Interlocks

- 16 more cables need to be added(RFQ+DTL)
- for RFQ, 70% fast interlocks with problem(hardware or cables are missing)
- To be checked
 - racks, power, slow interlocks...
 - Interfaces with RF/Vacuum/Water

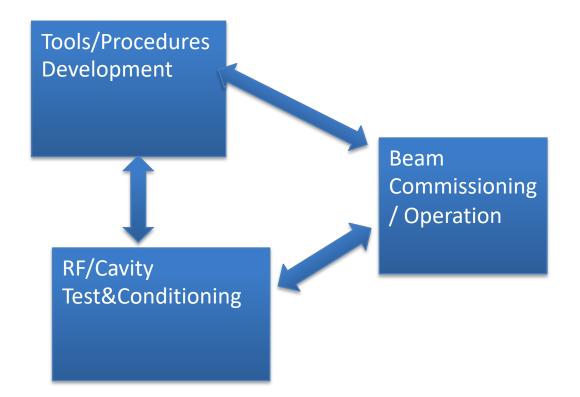
Tools

EUROPEAN SPALLATION SOURCE

https://confluence.esss.lu.se/display/LG/RFQ+Test+Plan

	(h)	(Names)		
e.g. Magnet Polarity Check; Cooling Interlock Test; RF Conditioning, etc.	hours	e.g. E. Trachanas (WP3), T. Fay (ICS), other WP support	e.g. Cables & connectors installed, tested and connected to the equipment; Activity A is complete before activity B can start.	
Prepare racks for Power Up	16 h	Emmanouil (WP3), T. Fay (ICS), P. Van Velze (ICS)	cables pulled and terminated by Infra or WP3/ICS, racks installed, POU installed, Conventional Power provided (expected end of Feb 2020), Electrical Schematics	
Connect cables and connectors to components	16 h	Emmanouil (WP3), T. Fay (ICS), P. Van Velze (ICS)	Cables pulled and terminated by infra or WP3/ICS, Labelling of devices, As-built Electrical Schematics	
RFQ Conditioning Application testing	120 h	Emmanouil (WP3), T. Fay (ICS)	local tests, integrated tests and deployment of App at TS2 (24 h just for RFQ)	
Pick-up calibration application		D. Noll (WP3), T. Fay (ICS)		
Calibration of 22 pick up RF cables and Cavity Field Validation	8 h	CEA, D. Noll (WP3), T. Fay (ICS), R. Zeng (WP3)	LLRF System + Controls Calibration procedure OPI available to carry out calibration and results can be archived to database	
Validation of Fast Interlock: Arc detector	8 h	ICS, RF	RF LPS System + Control Available	
Validation of Fast Interlock: Vacuum	8 h	ICS, Vacuum	RF LPS System + Control Available	
Validation of Fast Interlock: Electron-current	8 h	ICS, RF	RF LPS System + Control Available	
Validation of Slow Interlock: Temperature, water flow	4 h	T. Fay (ICS), WPS	RF LPS System + Control Available	
Validation of Temperature stability without RF	4 h	T. Fay (ICS), WPS	Temperature stability controlled by water skid are within ±0.1 degC, Maximum temperature range are 77	
Frequency detuning measurement with RF	16 h	T. Fay (ICS), WP3, LLRF	LLRF System + Controls Available.	
Frequency tracking in open loop (low power RF)	16 h	T. Fay (ICS), WP3, LLRF	LLRF System + Controls Available.	
Frequency tracking in closed loop (low power RF)	16 h	T. Fay (ICS), WP3, LLRF	LLRF System + Controls Available.	
RFQ werm up and automation (high power RF)	8 h	T. Fay (ICS), WP3, LLRF	High Level IOC to automate procedure.	
RFQ RF conditioning	240 h	T. Fay (ICS), WP3, RF	High Level IOC to automate RF conditioning	
Post conditioning. Sort out data, analyse the results and identify potential issues	40 h	WP3, RF	To be completed prior to the next phase (beam commissioning). Preparation for operations.	
"Long" run test at Emax	24 h continuous	WP3, LLRF	8FQ running at maximum gradient for minimum? Hours in open loop And minimum? hours in closed loop. Will need 3 shifts!	

Procedures



EUROPEAN SPALLATION SOURCE

What Expects in Theory

More Practical Mode

EUROPEAN SPALLATION SOURCE

Thank you