

ESS-IMP collaboration meeting, Dec. 25, 2019, ESS, Lund, Sweden

High Power SRF Linacs at IMP

<u>Yuan He</u>

On behalf of Accelerator team of CiADS

Linear Accelerator Center

Institute of Modern Physics, Chinese Academy of Sciences

Supported by "Strategic Priority Research Program" of the Chinese Academy of Sciences

- Introduction Projects HIAF and CiADS of IMP
- Development of SRF at IMP
- Status and Stability Issues of CAFe Operation
- Beam physics study on CAFe
- Physics experiments on CAFe
- SRF Activities for the ADS Future
- Summary

Yuan He, SRF Linacs at IM

- Approved in Dec. 2015; Leading institute: IMP
- CiADS Budget: ~4B CNY (Gov. + local + Corp.)
- Partners: CIAE, IHEP, CGN, etc.
- HIAF Budget: ~3B CNY (Gov. and local)
- Partner: PKU
- Location: Huizhou, Guangdong Prov.

Yuan He, SRF Linacs at IMP, Dec. 9, 2019, ESS, Lund

One of Solution of Sustainable Development

- Physics : phase advance <90; smoothness of focusing strength
- Engineering : minimization and uniformity of the hardwares, such as CM, SC cavities
- Operation: the margin of operation VS design value

Optimization of "smoothness" from 2 to 10 degs !!

	HWR010	HWR019	Spoke042	Ellip062	Ellip082
f (MHz)	162.5	162.5	325	650	650
βopt	0.10	0.19	0.42	0.62	0.82
Number of cells	2cell	2cell	3cell	6cell	5cell
Epeak(MV/m)	26/30	28/33	28/33	28/33	28/33
Num of cavities	9	24	40	40	24
Focusing elements	SC sol	SC sol	SC sol	triplet	doublet
Num of magnets	9	24	20	10	6
Magnet field(T)	7.5	7.5	7.5	0.9	0.9
Length of CM(m)	6	6	6	6	6
Num of CMs	1	4	10	10	6

SC Cavity		HWR010 HWR019		SPOKE042	Elliptical062- 6cell	Elliptical082- 5cell	
Beta		0.10	0.19	0.42	0.62	0.82	
frequency	MHz	162.50	162.50	325.00	650.00	650.00	
Beam Aperture	mm	40.00	40.00	50.00	100.00	100.00	
Leff	m	0.185	0.351	0.582	0.824	0.895	
L _{ftof} (flange to flange)	m	0.2100	0.4700	0.8300	1.2200	1.2200	
Ep/Eacc		5.60	4.25	3.84	2.80	2.10	
Bp/Eacc	mT/MV/m	12.71	6.35	6.95	4.86	3.98	
Ep1(operation)	MV/m	26.00/30	28.00/33	28.00/33	29.00/33	29.00/33	
Bp@Ep1	mT	59.01	41.84	50.68	50.37	54.96	
TTF		0.83	0.8867	0.80	0.72	0.74	
Veff@Ep1	[MV]	0.86	2.31	4.24	8.54	12.36	
V0 @Ep1	[MV]	1.03	2.61	5.30	11.81	16.82	
Eacc@Ep1	[MV/m]	4.64	6.59	7.29	10.36	13.81	

Yuan He, SRF Linacs at IMP, Dec. 9, 2019, ESS, Lund

- Introduction Projects HIAF and CiADS of IMP
- Development of SRF at IMP
- Status and Stability Issues of CAFe Operation
- Beam physics study on CAFe
- Physics experiments on CAFe
- SRF Activities for the ADS Future
- Summary

SRF cavities operation with beam

21 in total, 18 online

12 in total, 11 online

12 in total, 6 online

(f = 162.5 MHz, beta = 0.067) 8 9 10 11 12 2 0 3 6 7 1 5 Eacc (MV/m) 10 15 20 25 30 35 40 0 45 50 55 60 65 70 5 Epk (MV/m) 1E10o° 1E9 Design goal 1E8 25 0 5 10 15 20 30 35 50 55 40 45 Bpk (mT) 2.0 3.5 4.0 0.5 1.0 1.5 2.5 3.0 4.5 0.0

U (MV)

Yuan He, SRF Linacs at IMP, Dec. 9, 2019, ESS, Lund

3 CMs HWR010

2 CMs HWR015

1 CM SPOKE024

6 CMs have been constructed, and 5 of them operated with CW proton beam.

- Linde L280, 850W/4.2K
- FSD571 main compressor
- DS85 recovery compressor
- Recovery compressor, 15MPa/40m³*4
- HP He purifier, $15MPa/100m^3$

- HP He tank, 15MPa, $8000m^3$
- Gas bags, 25m³*2
- Purity analyzer on line

- Introduction Projects HIAF and CiADS of IMP
- Development of SRF at IMP
- Status and Stability Issues of CAFe Operation
- Beam physics study on CAFe
- Physics experiments on CAFe
- SRF Activities for the ADS Future
- Summary

Chinese ADS Front-end Demo linac (CAFe)

• Supported by "Strategic Priority Research Program" of the Chinese Academy of Sciences.

CiADS.

Commission stage	First CW beam	Max Energy (MeV)	Beam time (hours)	CW beam time Total (hours)	CW Current Max(A)	CW Power Max(k W)
RFQ1/2	Jun. 21, 2014	2.15/3	2036/~200	90/~120	11	23
TCM1	Nov. 24, 2014	2.55	208	22.5	11	28
TCM6	Jun. 24, 2015	5.3	400	20	4	21
INJECT II	Sep. 24, 2016	10.2	327	11	2.7	26
CAFE	Jun. 7, 2017	26.1	~500	~140	2.55	45

- 1. 2014.06.06—2014.07.24, RFQ
- 2. 2014.09.14—2015.02.13, TCM1
- 3. 2015.03.26—2015.06.29, TCM6, beam accident, RFQ AMP and coupler broken

2015.10.28—2016.01.21, TCM6 commissioning

- 2016.05.01—2016.06.20, injector II, coupler broken
 - 2016.09.01—2016.12.17, injector II high power
- 5. 2017.04.28—2017.06.18, CAFe, current leads broken 2017.10.03—2018.01.23, CAFe, operation stability 2019.01.04—2 mA CW beam, operation stability

Commissioning Goal: Higher power, Higher stability

~ 2017

🔆 Preliminary RAMI analysis w/o active protection 💋

Operation	tion time Beam time		Down ti	me	Availability	
4050 min 3566 min		484 m	in	0.88		
MTBF (min)		MTTR (min)	Beam trips (10	Ds—5min)	Beam trips (>5min)	
111.4		16.1	20		10	
	ECR HV	RFQ AMP	SRF (incl. LLRF)	Cryo-plan	t Power supply	
Beam trips	6	2	21	1	1	
Down time	53 min	77 min	78 min	183 min	100 min	

Yuan He, SRF Linacs at IMP, Dec. 9, 2019, ESS, Lund

2019

RAMI of CW beam with active MPS

Operational Gradient Degradation

- 2018/12/4: before CW commissioning
 - 2019/5/17: after CW commissioning, return to room temperature, RF conditioning
 - FE onset almost not change

- CM1 removed after 10 MeV test
- Warm back to room temperature, vacuum ~100 Pa, 2017/01 to 2018/09
- Re-install after RF condition, Ep average 18 MV/m with γ 30 uSv/h limit (ball shape, EGM).
- Average performance almost not change after the CM1 not used for one year in room temperature, vacuum ~100Pa

Compare at same γ -dose

- Degradation: CM1-1, CM1-3, CM1-5, CM2-5, CM3-1, CM3-2
- For the 6 cavities, 8.6MV/m decrease

Field oscillation caused by CW beam

Windows broken of FPC and Pt Caused by FE

Yuan He, SRF Linacs at IMP, Dec. 9, 2019, ESS, Lund

Microphonics of SRF resonators in CM2

Yuan He, SRF Linacs at IMP, Dec. 9, 2019, ESS, Lund

- Introduction Projects HIAF and CiADS of IMP
- Development of SRF at IMP
- Status and Stability Issues of CAFe Operation
- Beam physics study on CAFe
- Physics experiments on CAFe
- SRF Activities for the ADS Future
- Summary

Beam based of correction of BPM model

-15

-10

-5

-5

NT section BPM Vs. correct magnet

Question: the measurement beam position is not matching with the simulation results for accelerator reconstruction Reason: the beam position with severe nonlinearity(>5mm) using the $\Delta U/\Sigma U$ algorithm

> initial beam position after log correction

> > 15

Lead to: the real beam positon \gg measurement ones Solution: Correct the beam position algorithm of BPM

5

10

 \geq

 \succ

BPM	X (mm)	Y (mm)		The calibration results of Cold BPMs							
BPM1	0.449	0.559		BPM	BPM6	BPM7	BPM8	BPM9	BPM10	BPM11	BPM12
BPM2	-0.026	0.432		X (mm)	-1.19	-1.19	-0.57	1.37	1.44	1.28	4.66
BPM3	0.063	-0.325									
BPM4	0.434	0.158		Y (mm)	-2.82	-1.13	-1.72	-5.76	-1.35	-3.86	-0.47

Cavity voltage calibration

- Beam based TOF length calibration of BPMs (L3)
- Correct GAP model of low beta cavity with field map model considering of space-charge effect
- Based of the BPMs TOF for calibrating the length of local cavity and BPM as the phase scan fitting parameters (L1 L2)

Beam match between LEBT and RFQ

tomography to reconstruct the emittance

equally

0.01

0.001

0.0001

- 0.8

- 0.6

- 0.4

- 0.2

- 0.8

- 0.6

0.4

-0.2

SS, Lund

6

0.247/-0.051/-

- Introduction Projects HIAF and CiADS of IMP
- Development of SRF at IMP
- Status and Stability Issues of CAFe Operation
- Beam physics study on CAFe
- Physics experiments on CAFe
- SRF Activities for the ADS Future
- Summary

Failure analysis

- Operation for users, Dec. 7^{th} 30^{th} , 2018, May 14^{th} ~June 30^{th} 2019
- Beam: H⁺ and ⁴He²⁺, energy 2.1–32MeV, average current 100nÅ²125uÅ
- Available beam time 58.0 hours for 62 experiments
- Downtime: 5.9 hours
- Availability: ~ 0.90

- PANDAX is aimed to find the dark matter particles with liquid Xenon detector. <u>https://pandax.sjtu.edu.cn/</u>
- ⁸³Rb is a useful source to calibrate detectors in PANDAX.
- CAFE provided 10 hours proton beam of 20 MeV 400 us, 25 Hz, 100 uA to bombard on natural Krypton gas and generate ~6 MBq ⁸³Rb.

- Helium bubbles is important in nuclear material.
- To study the bulk effect of Helium bubbles, an irradiation chamber is developed to hold and cool the test samples.
- CAFE provided 70.5 hours ⁴He²⁺ beam of 6~28.5 MeV, 0.8 euA to do Helium implantation of test samples.
- The chamber has been dismantled and wait for the Dose decay, before the samples are took out and do mechanical and microscopic measurement.

- Introduction Projects HIAF and CiADS of IMP
- Development of SRF at IMP
- Status and Stability Issues of CAFe Operation
- Beam physics study on CAFe
- Physics experiments on CAFe
- SRF Activities for the ADS Future
- Summary

- High stability, low cost, performance recovery every year insitu
- Copper based thin film cavity and plasma + He cleaning are our choice for the future project demo
- Recipe of stable CW RFQ, MP and arc free

Some remarks on Nb₃Sn tested at 4.2K:

- As deposited: limited by the material and test system (large remnant B field) 1.
- 2. After baking: much improved! Q₀ reaches 4.4e9 at low field. Very small Q slope. Showing low temperature annealing could be an effective way to process Nb₃Sn cavity made by tin-diffusion.

Yuan He, SRF Linacs at IMP, Dec. 9, 2019, ESS, Lund

underwent 100°C

Vacuum was kept

below 1.4e-5 Pa

48h baking.

Nb₃Sn on Cu via ternary reaction

Miscellaneous phase and poor bonding strength

 $T_c{\sim}14K$ was achieved by optimized method on $Cu\ substrate$

Cu based Nb₃Sn cavity is the future technical route that best meets the needs of CiADS!

Plasma cleanings for HWR cavities

• Cleaning on Nb samples, HWR cavities and mechanism of CH-contamination

HWR performance improvement by Plasma

- Carbon contamination decreases the work function, which can be recovered by the reactive oxygen plasma cleaning;
- HWR processed by plasma results in the increase of Epk by 29%;
- Hydrocarbon by the cryogenic adsorption and PECVD can be eliminated by thermal cycle and plasma cleaning.

- Introduction Projects HIAF and CiADS of IMP
- Development of SRF at IMP
- Status and Stability Issues of CAFe Operation
- Beam physics study on CAFe
- Physics experiments on CAFe
- SRF Activities for the ADS Future
- Summary

- The SRF started in IMP since 2010. The low beta cavities such as HWR, Spoke, CH have been developed in IMP and operated.
- The first FPC was designed and fabricated at IMP in 2016. Now, 17 couplers are operating online.
- The ADS front-end demo linac, CAFe (25 MeV superconducting linac) started commissioning in 2017. It has achieved max beam power of 45 kW with 2.55 mA @ 17.5 MeV. It operated at 2 mA more than 100 hours continuously.
- Next commissioning campaign is more than 100 kW beam power, and higher stability in 2019.
- The thin-film SRF on copper and in-situ cleaning are the developing technologies in IMP for the future ADS.

Thanks the worldwide collaboration!

Looking forward to the deeper collaboration