

EUROPEAN SPALLATION SOURCE

Health physics calculations related to the target station radiation protection design

Zsófia Kókai Supervisors: Luca Zanini, Péter Zagyvai, Szabina Török December 10, 2013 ESS/Medicon Village Lund

AD and ICS Retreat mtg 2013

Outline

- Why do we need health physics calculations?
 - Radiation protection, input for shielding design
 - Safety, input for radiation safety calculations
 - Radioactive waste management, input for radioactive inventory
- Example: activation and dose rate calculation method
- Preliminary results of the neutron guide activation calculations

Radiation protection

- Dose limits for normal operation /SSMFS 2008:51, ESS-0000004/
 - Radiation workers: 10 mSv/year
 - Non-exposed workers: 0.05 mSv/year
 - Public: 0.05 mSv effective dose/year
 - ESS: 1 manSv collective dose/year

Radiation safety

7 MAJOR

4 ACCIDENT WITH

- Different dose limits for events with different probability of occurrence, e. g. for design basis accident /SSMFS 2008:51, ESS-0000004/:
 - Radiation workers: 50 mSv/event
 - Non-exposed workers: 20 mSv/event

Method for radioactive inventory and dose rate calculation

Target station monolith design (Alan Takibayev)

Neutron guides in the target station

- Neutron transport
- Planned systematic replace (radiation damage, mechanical failure, progress in guide technologies)

Extremely low expansion ZERODOUR® glass

Other parts: aluminium and stainless steel cover, screws

AD and ICS Retreat mtg 2013

Neutron guide MCNPX geometry based on draws by Mirrotron co.

MCNPX results: Neutron flux map

Fluence

- The 2 mA current means 1.248 10¹⁶ proton/sec intensity (I_{proton})
- In this calculation 200 days per year operation time has been assumed at full power. It corresponds to an average current of 6.841.10¹⁵ proton/sec.

The total neutron flux is proportional to this intensity:

$$\Phi := \Phi_{tot} = I_{proton} \cdot \int_{0}^{E \max} \Phi(E) dE$$

• The fluence has been calculated assuming irradiation time of 10 years

Fluence

CINDER'90 activation script results: Activity concentration

CINDER'90 activation script results

Most active isotopes in the glass after 1 day cooling

Isotope	Activity concentration (Bq/g)	E _{gamma} (MeV)	~					
H-3	1.73E+009	-	α	🤣 — ,	• 1		100	
Zn-65	3.51E+007	1.11 (50%)	β	•	2. 0. 10	*		
P-32	2.96E+006	-	V	AAAA	S AAA	S LAAN	60	
Na-24	9.54E+005	2.75 (100%)	1	www	n mh	n huh	w provi	w
		1.37(100%)						
Zn-69	8.17E+005	-		Pa	aner Alur	ninium	Lead	
Nb-95	7.63E+005	0.77 (100%)	3	10	aper Alui	minum	Leau	
Zn-69m	7.61E+005	0.44 (95%)						
Zr-95	7.56E+005	0.72 (44%)	cm ²	Effective	dose			3 88 8000
		0.76 (54%)	S 10 ²					
Nb-97	5.61E+005	0.66 (98%)	e (p					
		1.02 (1%)				₽		
Zr-97	5.21E+005	0.74 (93%)	er flu					
		0.51 (5%)	ອີ ອຸ 10° -				 	٨P
		1.15 (3%)	qos				.	PA
Nb-97m	4.94E+005	0.74 (100%)	9 10 ⁻¹				▲ 	
			ffec				0	ROT
EL	UROPEAN PALLATION							ISO
s	DURCE		10 ^{- +} 10) ⁻² 10 ⁻¹	10 ⁰	10 ¹	10 ² 1() ³ 10
					Photon	energy (Me)	√)	

ICDD#117

CINDER'90 gamma script and MCNPX results: Gamma flux and gamma-ray dose rate maps

CINDER'90 gamma script and MCNPX results: gamma intensity and gamma-ray dose rate maximum

Future tasks

- Additional activation studies of target station elements in terms of radiation protection
- Define different scenarios to estimate the effective doses of workers and the public
- Based on the results optimize the shielding and material concept

EUROPEAN SPALLATION SOURCE

AD and ICS Retreat mtg 2013

Thank you for your attention

EUROPEAN SPALLATION SOURCE

Acknowledgement: Supervisors, Ferenc Mezei, Alan Takibayev, Konstantin Batkov