

NMX Update

Giuseppe Aprigliano Instrument Lead Engineer NMX

www.europeanspallationsource.se

IKON 18 25th Feb ,2020

NMX Project structure NMX Outline NMX Technical components NMX Cave

Project structure

C

EUROPEAN SPALLATION

SOURCE

Lead Scientist: Esko Oksanen, ESS Second Scientist: Gergely Nagy, Wigner

Dorothea Pfeiffer	(ESS- Detector group/CERN)
Valentina Santoro	(ESS)
Hansdieter Schweiger	(ESS)
Damian Martin Rodriguez	(ESS)
Markus Olsson	(ESS-NCG)
Erik Nilsson	(ESS-NCG)
Stuart Birch	(ESS-PSS)
Laurence Page	(ESS-Vacuum Group)
Paul Barron	(ESS-MCA)
Thomas Holm Rod	(ESS-DMSC)
Jonathan Taylor	(ESS-DMSC)

Jean-Luc Ferrer Márton Markó Szabina Török Petri Kursula Ants Koel (IBS – GSY Group, FR)
(Wigner Research Centre, HU)
(Centre for Energy Research HU)
(University of Bergen, NO)
(Tallinn University of Technology, EE)

Lead Engineer: Giuseppe Aprigliano, ESS

NMX Outline

Detector system

NMX Outline (In bunker)

NMX Outline (Out of bunker)

NMX Outline: EXP Cave and endstation

Neutron guides

Side view

Neutron guides

Open call for tender issued Feb20

Split procurement between optics and vessel

(wígner

Gergely Nagy Márton Markó

Neutron guides

Side view

Gergely Nagy Márton Markó

Wavelength Selection Choppers

- Disk diameter 700mm
- Rotating frequency 14 Hz
- B4C resin-epoxy coating.
- Single disk at 32m
- Double, co-rotating disk at 51m

Critical components delivered from Hungarian IK partner

Figure 1 - Standard ESS chopper Courtesy of: Erik Nilsson (NCG)

Shutter

Guide shielding

Endstation

Endstation

- 1 Collimation System enclosure
- 2 In air neutron slits
- 3 Scraper tube
- 4 Fixed aperture

- 5 Sample exposure shutter
- 6 Pinhole collimation system
- 7 Non safety beamstop

Endstation Components: Detectors

EUROPEAN SPALLATION SOURCE

Dorothea Pfeiffer (ESS/CERN), Richard Hall Wilton(ESS)

IK contribution from Tallinn University of Technology,

Triple GEM with Gd2O3 coated cathode

Three detectors of 500 mm x 500mm active surface.

Light weight detector suitable for integration on robotic arm

More detail in dedicated session

Courtesy of: Dorothea Pfeiffer

Main components: Infrastructure

The control hutch is necessary to perform any further work on the infrastructure in E01 and to provide safe access to the cave roof.

Specifications are in advanced state Open call for tender planned for Q2 2020

Difficult decisions ahead... What colour of cave walls? What tiles for the cave raised floor?

Main components: Infrastructure

Detector system

Status per component

			S								
			р								
Component	Design	Procurement	е	C	0		Р	С	S	I.	S
			С	Т	С	к	D	D	Α	R	Α
			s	v	Т	0	R	R	Т	R	R
NBOA	EK/Wiegner	ESS	Х	Х	Х	Х	Х	Х	Q3 2020		
BBG	EK/Wiegner	ESS	Х	Х	Х	Х	Х	Х	Q3 2020		
In bunker	EK/Wiegner	EK/Wiegner	Х						Q4 2021		
BWI	EK/Wiegner	EK/Wiegner	Х	Х	Х				Q4 2020		
Out of Bunker	EK/Wiegner	EK/Wiegner	Х						Q2 2022		
Chopper components	EK/Wiegner	EK/Wiegner	Х						Under discussion		
Chopper 1	ESS	ESS	Х	-	-	Х			Under discussion		
Chopper 2	ESS	ESS	Х	-	-	Х			Under discussion		
Detectors	ESS	ESS/Tallin Univ.	Х						Q4 2022		
Robotic systems	CEA	CEA	Х	Х					Q2 2022		
Shutter	ESS/EK/Wigner	ESS	Х						Q4 2021		
Beam monitors	ESS	ESS							Under discussion		
Guide Shielding	ESS/EK	ESS	Х	-	-				Under discussion		
Exp Cave	ESS/EK	ESS	Х	Х	Х	Х	Х	Х	-	Х	Q2 2020
Control hutch	ESS	ESS	Х						-		Q4 2020
Infrastructure E01	ESS	ESS							Q1 2021		
Collimation system	ESS	ESS							Q1 2022		
Cryostream / HC1	ESS	ESS							Q4 2022		
Beamstop	ESS	ESS							Q1 2022		
PSS	ESS	ESS							Under discussion		
Sample prep.	ESS	ESS							Q1 2022		

A closer look: The experimental cave

Accessibility

EUROPEAN SPALLATION SOURCE

Personnel and goods Access from control hutch.

Optional opening on the roof to easily access sample position.

Accessibility

EUROPEAN SPALLATION SOURCE

Roof in two layers to fulfill crane capacity limitation Manhole is considered for accessing second sample position Roof can be opened completely

Penetrations through the walls and roof

Penetrations in the concrete for media, general purpose power and signals

Final design

Limitations on floor loading led to cast in place solution for the foundation (dismountable) Accidental scenarios, impose limitations to roof opening Safety considerations implemented (Fall protection, documented dismounting sequences)²⁵

Construction process IPL involvement

Preparatory work

Created the Ib 201 (Cave foundation only) Collected workers safety certificates (Hot works, first aid) Collected RAMS and Performed TG4 IRR Consultations with BAS-P and EH&S on general safety Consultations with CF to agree on floor loading and grinding. Consultations with rigging team on construction and

operations Issued Work order and Organized site induction courses

Restrict site plan

Recursive work

Issue work requests for each operation on EAM tool (SAM/Rigging/Unloading) Timely procurement of services (Temp crane..) Coordinate with logistics to ensure access to trucks Regularly update the installation binder Regular safety rounds

Setup of construction environment framework

BAS-U, area BAS-U and BAS-P Prior notification to authorities Construction H&S plan Site plan organization

Lesson learnt: Organization

- Coordination with Bas-P, Bas-U, CF ,metrology and ESS rigging team, already before CDR, was paramount.
- After TG4, day to day coordination with BAS-U, rigging team, SEC, and metrology, part of this work falls on the IPL shoulders.
- IPL heavy workload setting up the Installation binder for the first time, coordinating timely logistics and work requests as needed (at least in the initial phase)
- After the first difficulties in setting up the work requests support from the ESS teams was excellent.
- We just passed IRR 2 (completion of cave erection), From now on, it will be a piece of cake....

The Installation binder (only the index though..)

Lesson learnt: Management of work area

Issues solved on the spot: Truck carrying rebars would not fit in the door: Reorganization of unloading method.

A ladder was not foreseen to release slings from a utility container, wasted time.

Space allocation conflict outside the E01 building, negotiations with area managers.

Lesson learnt: Management of work area

A CONTRACTOR OF CONTRACTOR OF

E01 crane coverage was not as expected, identified need for temporary crane.

A closer look: The experimental cave

Cave foundation and internal plinths, all dismountable Detail design and manufacturing contract awarded to C3C Engineering AB: Started casting 19th Dec 2019

Some pictures

Some pictures

Looking forward

Thanks to you

and to everybody who contributed.