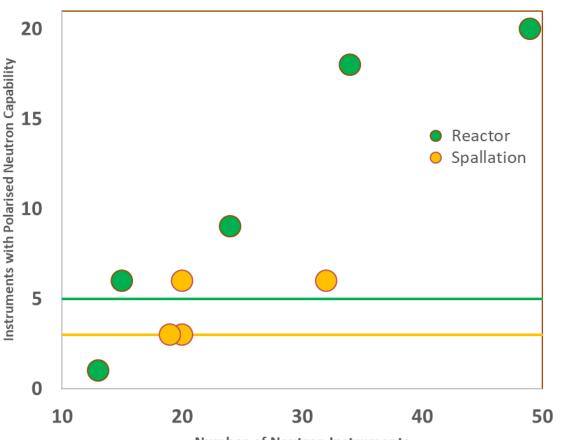

Coordinated plan to incorporate polarised neutron capabilities Wai Tung (Hal) Lee, ESS

EUROPEAN

SOURCE

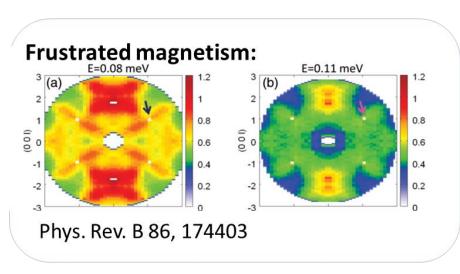

SPALLATION

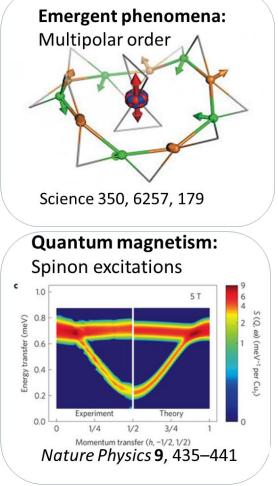
855

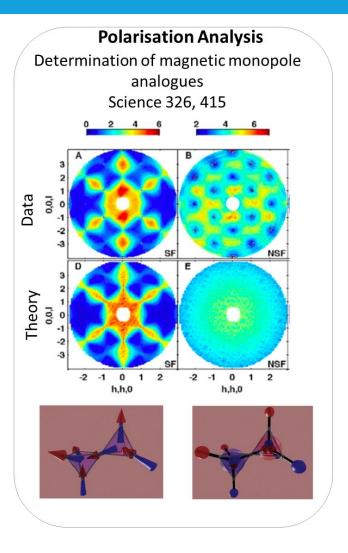
Polarisation for Scientific Studies

- Polarised neutron capability has been an integral part of neutron instruments serving the user community.
 - Over 100 neutron instruments are in Europe
 - Over 40 have polarised neutrons available
- Polarised neutrons have been changing from scarced to pervasive resources thanks to advances in solid-state and polarised ³He devices.
- Instruments worldwide are being upgraded to answer the user community's call for polarised neutrons to be available on many types of instruments.

Number of Neutron Instruments




Polarisation for Scientific Studies

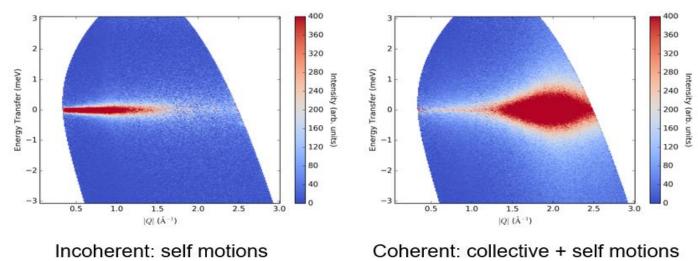


Spin states of matter: future based technologies

- Quantum magnetism
- Low dimensional magnetism
- Frustrated magnetism
- Topological states
- Spin-orbit coupling
- Emergent behaviour

Information courtesy of Pascale Deen, ESS

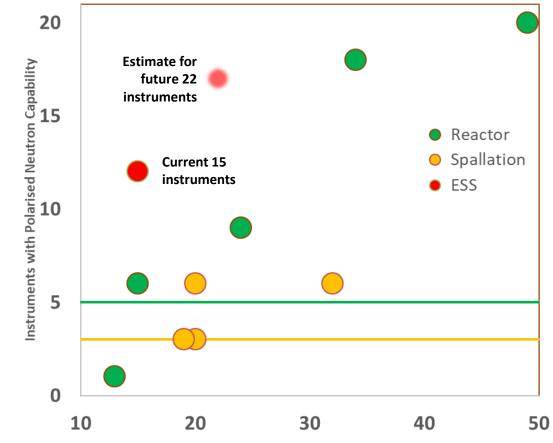
Polarisation for Scientific Studies



Hydrogenous materials Polarisation analysis: 1-d guide field only 2 cross-section only

incoherent-coherent separation

 Quasi-elastic neutron scattering - polarization analysis can distinguish dynamic processes which occur at the same Q and E


e.g. D2O on LET (ISIS)

A. Arbe et. al., submitted

Information courtesy of Gøran Nilsen, STFC

ESS Plan for Polarisation

- Where do we want to be?
- Many ESS instruments have polarised neutrons in their initial scope. The ESS now intends to provide a centralised service to realise the capability.
 - (1) 12 instruments may have polarised neutrons available for users.
 - (2) We are developing a polarisation work pacakge for implementation in 2020-2025
 - (3) Work will include hardware (design, build, install, commission, operation), control software, meaurement methodology, data reduction software, and ease-of-use improvements.
 - (4) The priority is based on the schedule of the instruments
- Scientific Advisory Committee, October 2019: "We recommend advancing this as fast as possible in order for it to be available by 2025."

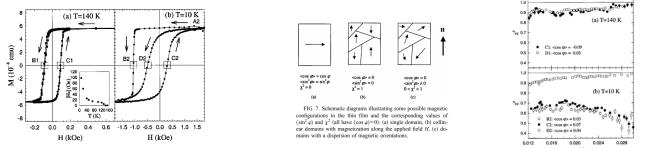
Number of Neutron Instruments

First venture into the field of polarised neutrons

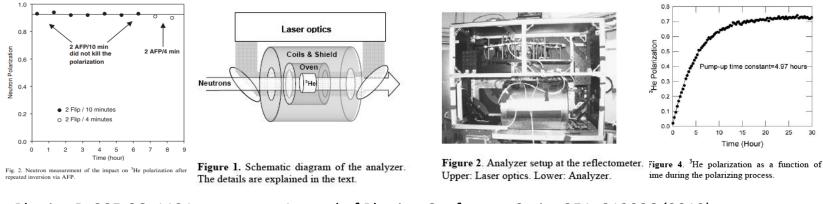
- **1. BIREFRINGING POLARISER**: Polarised neutron interferometry Scalar Aharonov-Bohm Effect.
- **2. HEUSLER CRYSTAL:** Inelastic polarised neutron scattering Chromium Spin Density Wave.

Work at ORNL

- **1. SUPERMIRROR**: Polarised neutorn reflectometry (PNR), characterise the then-new c-benders (outposted at Argonne Lab).
- 2. SPIN-EXCHANGE OPTICAL PUMPING (SEOP): Developed polarised ³He technique for polarised neutron scattering. Proposed Adiabatic Fast Passage (AFP) flipping of ³He spin to select neutron polarisation, first use of *in-situ* polariser, deployment in SNS PNR instrument.
- **3. LARMOUR DEVICE:** Collaborative works on Spin-Echo Scattering Angle Measurement (SESAME).
- 4. SELF-SHIELDED ASYMMETRIC MAGNET: Work with high-field magnet designer to show self-shielding and asymmetry work in tendem to stablise the magnet. First of its kind, a 5T "SLIM SAM" magnet at the SNS is still one of the most stable and most-requested magnets.


Work at ANSTO:

- **1. META-STABLE OPTICAL PUMPING (MEOP)**: Coordinated project to enable polarised neutorns on 6 instruments centring around the use of polarised 3He technology and MEOP ³He polarising station.
- 2. POLARISED NEUTRON SCATTERING METHOD: Develop measurement methodology and data reduction for using polarised ³He based neutron spin-filters.
- **3. SEOP FILLING STATION**: Built polarised ³He & ¹²⁹Xe filling station for medical imaging applications.


Work at ORNL

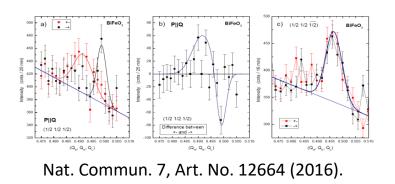
- 1. **SUPERMIRROR**: Polarised neutron reflectometry (PNR) at IPNS, while outposted to ANL with SNS division)
- Developed PNR techniques
- Characterise the performance of polarising supermirror and the then-new c-benders

Quantitative measurement of magnetic domain dispersion. Physical Review B⁶⁵, 224417 (2002).

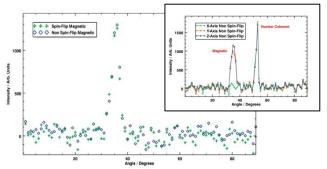
- 2. SPIN-EXCHANGE OPTICAL PUMPING (SEOP): Developed polarised ³He technique for polarised neutron scattering
- Proposed using Adiabatic Fast Passage flipping of ³He spin to select neutron beam polarisation.
- First to tested *in-situ* polarised ³He setup as a modulo setup on instrument
- Deployed SEOP analyser on SNS magnetism reflectometer. Reached unprecedented 5-hour pump-up time.

Physica B, 385-86, 1131 (2006). Journal of Physics: Conference Series 251, 012086 (2010).

SAN


Work at ANSTO

1. META-STABLE OPTICAL PUMPING (MEOP): Coordinated project to enable polarised neutorns on 6 instruments.


- ANSTO's reactor had been operating for nearly 10 years. The condition was right to allow an upgrade:
 - Instrument teams thoroughly understood their instruments.
 - Well-established user programme.
 - Downtime for developmental work for individual instrument was acceptable.
- Joint efforts with the ILL to deploy polarised neutron capability.

2. METHODOLOGY & DATA-REDUCTION: Measurement methods & proper data-reduction algorithm for using polarised ³He

Separate phonon & magnon on TAIPAN

"XYZ" method to identify magnetic signal on PELICAN

ESS instruments

- First-discussion with 14 instrument teams to identify the need for polarised neutrons.
- Follow-on discussions on the detail layout of the polarised neutron setup with 12 instrument teams.
- Organising an ESS Polarisation Workshop on 26th-27th of March at the ESS site.
- Reported to the Scientific Advisory Committee in October.

Fact-finding

• Visited 7 neutron scattering facilities and 4 manufacturers of polarised neutron equipment.

Capability build-up

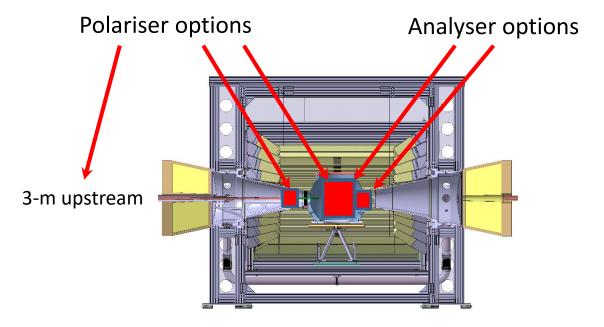
- Computation capability to do magnetic field design of polarised neutron setup on instruments:
 - COMSOL Multiphysics
 - Computation computer (soon to arrive)
- Calculation has began on individual instrument components.

Evaluation matrice based on current available technology

EUROPEAN SPALLATION SOURCE

- We did a first-round evaluation of the polarised neutron setup based on instrument models.
- Different polarised neutron techniques have different characteristics.
- Together with the instrument teams, we have identified the options for the respective techniques to further explore.
- What follow are brief overviews of the options we are exploring for each instrument (in alphbetical order of the instrument groups and instrument names)

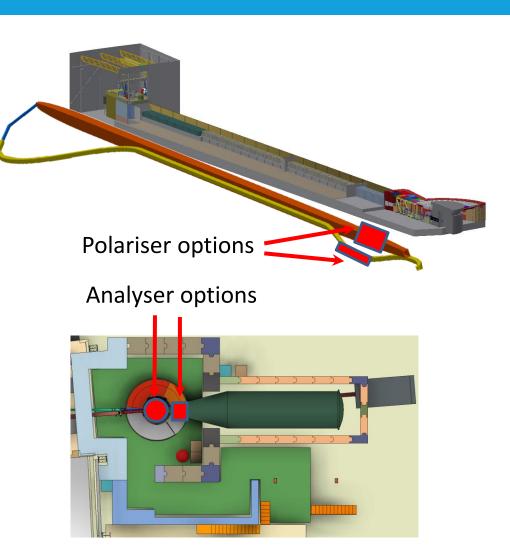
			NEUTRONICS						COST				
	λ<1.5 Å	λ>3Å	Large area cross-section	Large angula coverage of scattered bea	f Large beam	Susceptible to magnetic interference	Simple experimental setup		Lead time to change settings during experiment	Simple operation	Compact on- beam equipment	Sharable equipment	Up-front + long term operating cost, per instrument
Supermirror - single reflective	Long baseline small bema ar		Difficult	No	Limited	Low	Yes, with motorised		None	Yes	Moderate	No	Moderate
Supermirror - single transmission													
Supermirror - v-cavity			Ok										
Supermirror - c-bender	High antenuat	tion									Yes		
Supermirror - s-bender												Maybe	
Supermirror - wide-angle array	Impractically I baseline	ong		Yes							No	No	High
Polarised 3He - MEOP	Ok	Tradeoff between polarisation and			Ok	High			1 to 3 hours	Replace polarised gas periodically	Yes	Yes	Moderate
Polarised 3He - SEOP, off-situ									1 day	Replace polarised cell periodically			
Polarised 3He - SEOP, in-situ				Impractical Heating problem			Difficult du infrastructu		1 day	Yes	No		
Polariser		λ<1.5 Å								λ>3 Å			
	long baseline			shor	short baseline		long baseline		short bas		ine		
		difficult to acce location		ssible ation	difficult to access locatio				difficult to acces cess location loca		e difficul access lo		accessible location
Supermirror - single refle	ective												
Supermirror - single tran	smission												
Supermirror - v-cavity													
Supermirror - c-bender													
Supermirror - s-bender													
Polarised 3He - MEOP													
Polarised 3He - SEOP, off-situ													
Polarised 3He - SEOP, in-situ													
		Reflecto				SANG CEAN		ular			Wide-	anala	
A		λ<1.5 Å				SANS, GSANS, Off-specular			α' λ>3Å λ<1.			-	>3 Å
Analyser	With high-fiel magnet				eld With high- field magnet	With guide With high-		field				Mith high- field magnet	With guide fie
Supermirror - single reflective	magnet	Jilly	neru magnet	Unity	neiu magnet	nelu olity	magnet		on y	magnet	Ulli ý	neiu magilet	onny
Supermirror - single transmission													
Supermirror - v-cavity													
Supermirror - c-bender													
Supermirror - s-bender													
δupermirror - wide-angle array													
Polarised 3He - MEOP													


arised 3He - SEOP, off-situ arised 3He - SEOP, in-situ

Diffraction – DREAM

Mikhail Feygenson, Instrument Scientist Peter Harbott, Lead Engineer

- Magnetism & hydrogenous materials
- Polarise ³He with ³He spin-flipping most likely for both polariser and analyser.
- Different combinations of polarised ³He techniques and placements of the polariser & analyser are being explored.
- *In-situ* SEOP possible for polariser and low-angle analyser.



DREAM Detector Tank

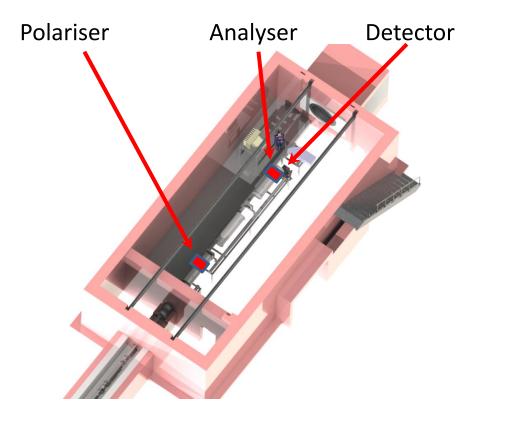
Diffraction – HEIMDAL Dan Mannix, Instrument Scientist Kåre Iversen, Lead Engineer

- Magnetism & hydrogenous materials
- Incident: Solid state polariser for cold incident beam. Polarise ³He with ³He spin-flipping for thermal beam
- Scattered: Polarised ³He analyser.
- Different combinations of polarised ³He techniques and placements of the polariser & analyser are being explored.
- *In-situ* SEOP possible for polariser and low-angle analyser.

Diffraction - MAGiC

Xavier Fabrèges, Instrument Scientist Sergey Klimko, Lead Engineer

- Magnetism
- Polarising supermirror for both polariser and analyser. Spin-flipper for incident beam.
- Dedicated polarised neutron instrument
- Polarised neutron equipment part of in-kind contribution
- Polarised ³He wide-angle analyser can be a valuable tool for the commissioning of supermirror analyser.

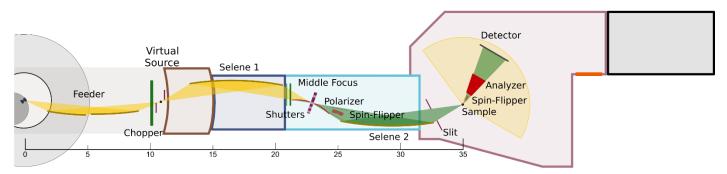

C-bender Polarising guide (cold) (thermal) Solid state Horizontal Sample + double detector bender Thermal and cold + polarization analysis moderators Choppers Polarising 165 m guide 0 m

Analyser

Engineering and Industrial - ODIN

Aureliano Tartaglione, Instrument Scientist Manuel Morgano, Instrument Scientist Elbio Calzada, Lead Engineer

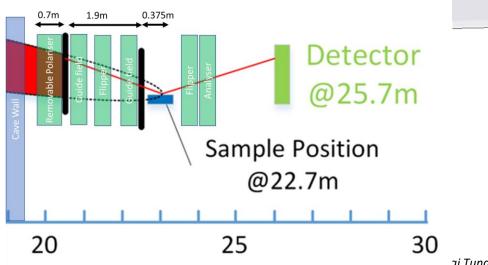
- Polarising supermirror for polariser
- Polarising supermirror or polarised ³He for analyser, depending on application
- For imaging, the sample-to-detector distance is limited for achieving good resolution. This places a constraint on the analyser.

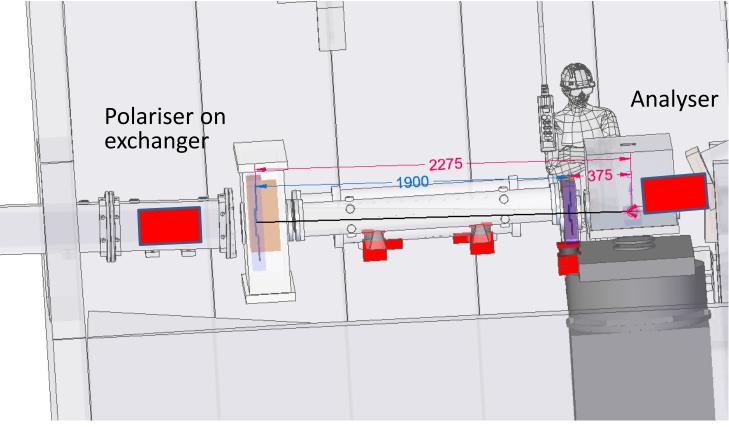

EUROPEAN SPALLATION SOURCE

Large Scale Structure – ESTIA

Artur Glavic, Instrument Scientist Sven Schütz, Lead Engineer

- Magnetism
- Polarising supermirror for both polariser and analyser. Spin-flippers for incident beam and scattered neutrons.
- Dedicated polarised neutron instrument
- Polarised neutron equipment part of in-kind contribution
- Polarised ³He analyser will serve as optional test device.

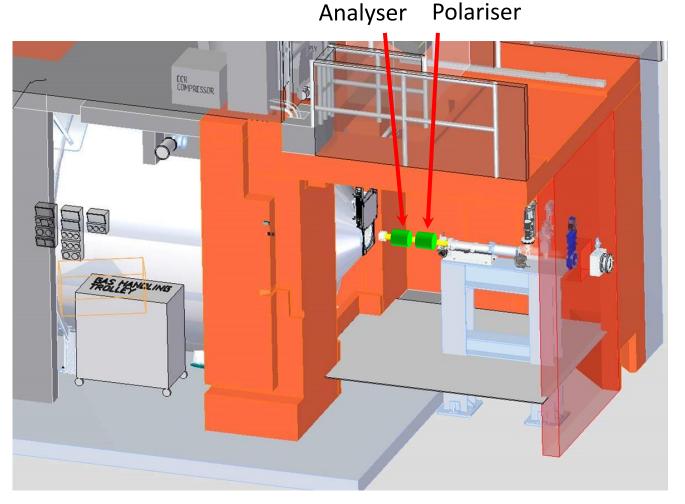




Large Scale Structure – FREIA

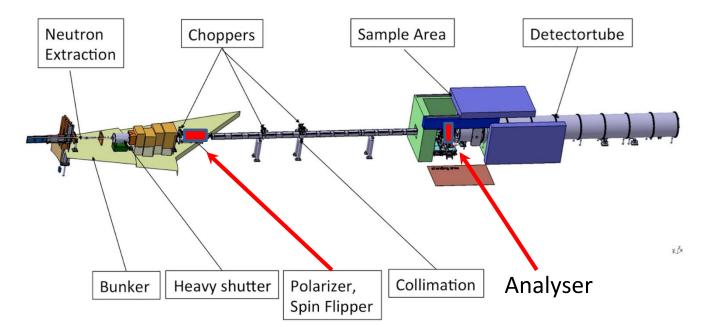
Tom Arnold, Instrument Scientist Jon Elmer, Lead Engineer

- Hydrogenous materials
- Polarise ³He with ³He spin-flipping for both polariser and analyser
- Large vertical height coverage would be the main challenge
- *In-situ* SEOP may be possible.



Large Scale Structure – LoKI Judith Houston, Instrument Scientist William Halcrow, Lead Engineer

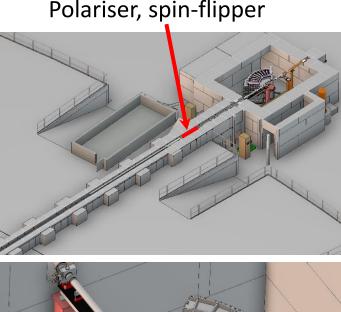
- Hydrogenous materials
- Polarise ³He with ³He spin-flipping for both polariser and analyser
- Compact setup at sample area
- *In-situ* SEOP may be possible.

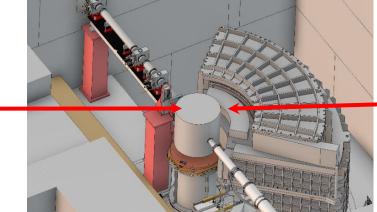


Large Scale Structure – SKADI

Sebastian Jaksch, Instrument Scientist Romuald Hanslik, Lead Engineer

- Magnetism
- Incident: Polarising supermirror polariser, spin-flipper
- Scattered: Polarised ³He with ³He spinflipping for analyser
- 2d translation of analyser needed
- Shielded high-field magnet needed to work with polarised ³He
- *In-situ* SEOP may be possible.

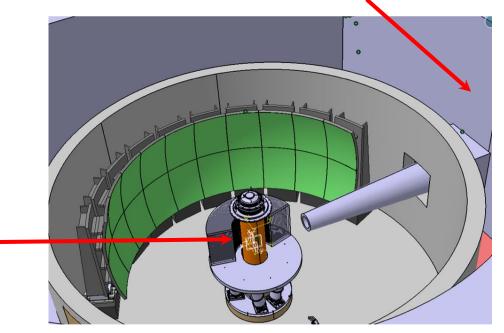



EUROPEAN SPALLATION SOURCE

Spectroscopy, indirect geometry – BIFROST *Rasmus Toft-Petersen, Instrument Scientist Liam Whitelegg, Lead Engineer*

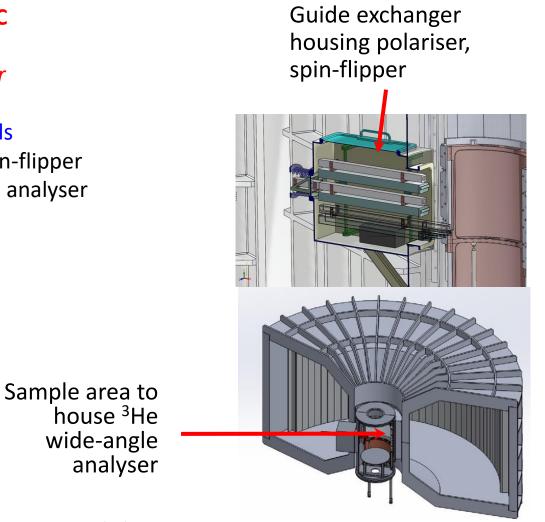
- Magnetism & hydrogenous materials
- Incident: Polarising s-bender, spin-flipper
- Scattered: Polarised ³He wide-angle analyser, limited coverage supermirror analyser, possible upgrade to wide-angle supermirror analyser.

Polarised ³He wideangle analyser (showing 3-d field coil region)


Supermirror analyser (showing full wide-angle analyser)

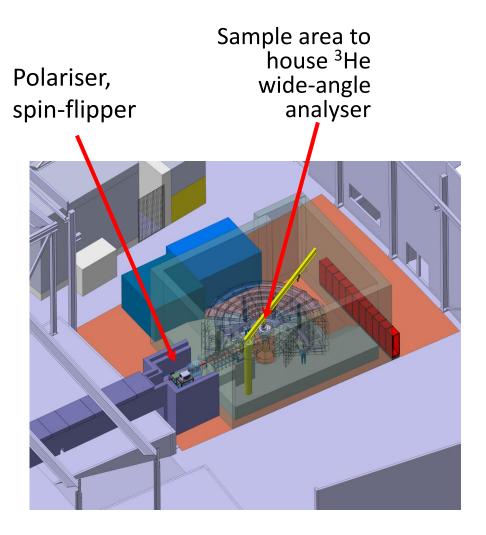
Spectroscopy, indirect geometry – MIRACLES *Félix J. Villacorta, Instrument Scientist*

- Hydrogenous materials
- Incident: Polarising supermirror, spin-flipper
- Scattered: Polarised ³He wide-angle analyser


³He wide-angle analyser between sample tank and collimator Guide exchanger housing polariser, spinflipper (not shown)

Spectroscopy, direct geometry – CSPEC Pascale Deen, Instrument Scientist Fernando Yamil Moreira, Lead Engineer

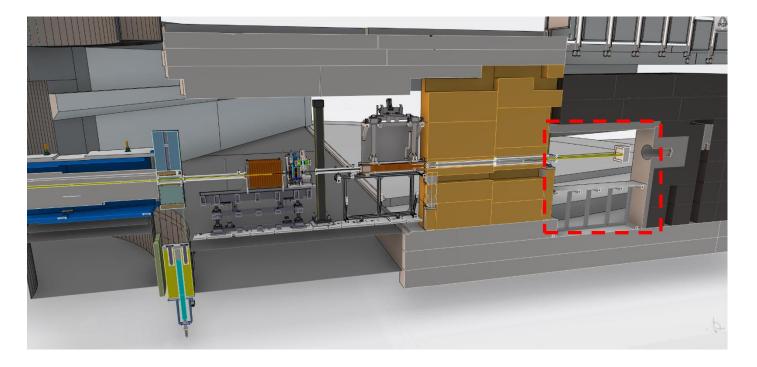
- Magnetism & hydrogenous materials
- Incident: Polarising supermirror, spin-flipper
- Scattered: Polarised ³He wide-angle analyser



Spectroscopy, direct geometry – T-REX Nicolò Violini, Instrument Scientist

Hans Kämmerling, Lead Engineer

- Magnetism
- Incident: Polarising supermirror, spin-flipper and/or *in-situ* ³He polariser
- Scattered: Polarised ³He analyser



Test Beam Line

Robin Woracek, Instrument Scientist Nicolas Breton, Lead Engineer

- Beam line for testing polarised neutron devices –
 - Polarising supermirror
 - Polarised ³He neutron spin-filter
 - Spin-flipper
 - Resonance coil

Summary of the polarised neutron setup options being evaluated

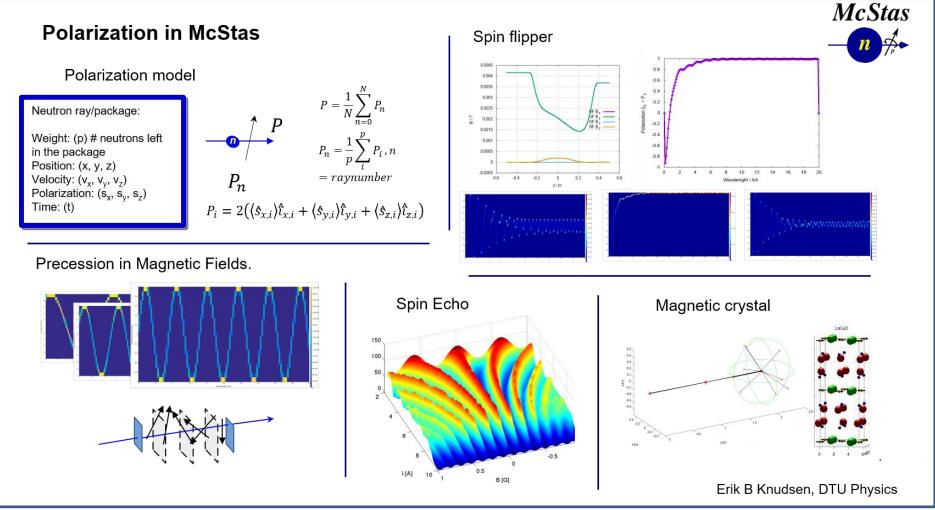
POLARISER	DIFFRACTION			ENG.	LA	RGE-SCALI	E STRUCTU	RE	SPECTROSCOPY				
POLARISEN	DREAM	HEIMDAL	MAGiC	ODIN	ESTIA	FREIA	LoKI	SKADI	BIFROST	CSPEC	MIRACLES	TREX	
Supermirror - reflection													
Supermirror - stack transmission													
Supermirror - v-cavity													
Supermirror - c-bender													
Supermirror - s-bender													
Polarised 3He - MEOP, cylindrical cell													
Polarised 3He - SEOP, in-situ, cylindrical cell													
ANALYSER	DIFFRACTION			ENG.	LARGE-SCALE STRUCTURE				SPECTROSCOPY				
ANALTSER	DREAM	HEIMDAL	MAGiC	ODIN	ESTIA	FREIA	LoKI	SKADI	BIFROST	CSPEC	MIRACLES	TREX	
Supermirror - reflection													
Supermirror - stack transmission													
Supermirror - v-cavity													
Supermirror - c-bender													
Supermirror - s-bender													
Supermirror - wide-angle array													
Polarised 3He - MEOP - wide-angle cell													
Polarised 3He - MEOP - cylindrical cell													
Polarised 3He - SEOP, in-situ, cylindrical cell													

Each combination of plausible setup will be evaluated on its merits.

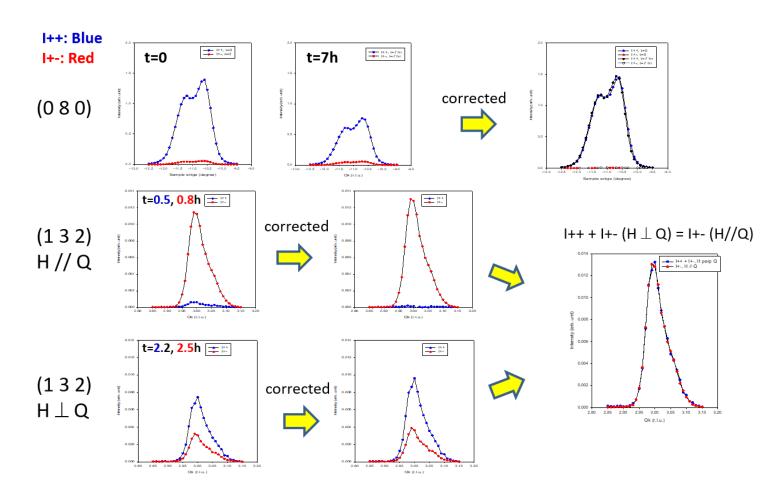
- Solid state devices being evaluated on 6 instruments.
- Cylindrical polarised ³He cell, either in-situ SEOP or MEOP being evaluted on 9 instruments.
- There are overlaps of solid state devices and polarised ³He devices in some instances. The mertis of each is to be evaluated.
- Wide-angle cell, MEOP being evaluated on 7 instruments

Design considerations – Magnetic field design

EUROPEAN SPALLATION SOURCE


- Polarised neutron setup
 - Magnetic field from the polariser to the sample and to the analyser.
 - Uniform magnetic field for ³He polarisation
- Proper magnetic field design based on instrument model is critical

Design considerations – Monte Carlo simulation


• Polarised neutron components also change the beam characteristics. Monte Carlo simulation will therefore be part of the design process.

Measurement methodology and data reduction

EUROPEAN SPALLATION SOURCE

- Data reduction: polarised neutron more complex than unpolarised neutron.
 - Both non-spin-flip and spin-flip measurements often need to be done.
 - Reference measurements also need to be for non *in-situ* polarised ³He device
- Discussion next week with DMSC colleagues to develop the methodology and data reduction resources.

Interface with Sample Environment

- There are two issues needing more extensive coordination with Sample Environment group:
 - 1. Magnetic interference: Polarised neutrons and polarised ³He devices are susceptible to magnetic interence in the vicinity.
 - 2. To guarantee spin-transport, asymmetric high-field magnet is needed for polarised neutron work.

EUROPEAN SPALLATION SOURCE

As a lead-up to develop the polarisation work package, we are organising a workshop:

ESS Polarisation Workshop, 26th-27th of March, ESS site

https://indico.esss.lu.se/event/1390/

The workshop will be a focal point to

- highlight the sciences that can be done on ESS instruments using polarised neutrons from the perspectives of the user community,
- share the experiences in polarised neutorn instrumentation R&D and in operations for experiments using polarised neutrons,
- provide an overview of the neutron polarisation setup options,
- advise the ESS on the developmental road map to incorporate polarised neutron capabilties, and
- write a workshop report to serve as the basis of the ESS Polarisation Work Plan

- The ESS intends to provide a coordinated service to assist instruments to incorporate polarised neutron capability.
 - (1) 12 instruments may have polarised neutrons available for users.
 - (2) We are developing a polarisation work pacakge for 2020-2025.
 - (3) Work will include hardware (design, build, install, commission, operation), control software, meaurement methodology, data reduction software, and ease-of-use improvements.
 - (4) The priority is based on the schedule of the instruments.
- Scientific Advisory Committee, October 2019: "We recommend advancing this as fast as possible in order for it to be available by 2025."
- ESS Workshop on Polarisation will be held on 26th-27th of March at the ESS site. https://indico.esss.lu.se/event/1390/

Acknowledgement

Ken Andersen Tom Arnold Premek Beran Peter Böni Nicolas Breton Elbio Calzada Pascale Deen Jon Elmer Xavier Fabrèges Mikhail Feygenson Artur Glavic William Halcrow **Romuald Hanslik** Peter Harbott **Alex Holmes** Judith Houston Vladimir Hutanu Alexander loffe Kåre lversen

Sebastian Jaksch David Jullien Hans Kämmerling Shane Kennedy Sergey Klimko Erik Knudsen Thomas Krist Zvonko Lazic Eddy Lelievre-Berna Zsoft Ludányi Dan Mannix Sergey Masalovich Stefan Mattauch Fernando Yamil Moreira Manuel Morgano Gøran Nilsen Michael Schneider Hansdieter Schweiger Werner Schweika

Markus Strobl Aureliano Tartaglione Jonathan Taylor **Rasmus Toft-Petersen** Malcolm Gutherie Arsen Goukassov Michael Schulz Andrew Jackson Philippe Bourges Félix J. Villacorta Jörg Voigt Nicolò Violini Hanna Wacklin-Knecht Liam Whitelegg Peter Willendrup **Robin Woracek**

Auxiliary Slides

First venture into the field of polarised neutrons

1. BIREFRINGING POLARISER: Polarised neutron interferometry - Scalar Aharonov-Bohm Effect

- An array of prime-shaped field splitted an unpolarised beam to 2 polarised beam.
- Single-crystal silicon reflections then selected the polarised beam.

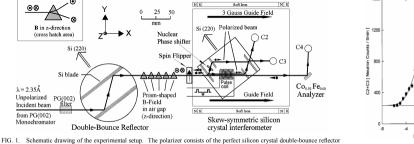


FIG. 1. Schematic drawing of the experimental setup. The polarizer consists of the perfect silicon crystal double-bounce reflector and the series of five prims-haped air-gap magnetic fields. The silicon serves -symmetric interferometer and the pulse coil are the key components to observe the SAB effect. A static type spin flipper is placed between the polarizer and the interferometer to rotate the neutron spins from the z direction to the longitudinal z direction. The permanent magnetig guide field maintains this direction of polarization throughout the region of the interferometer. Behind the interferometer is a magnetically saturated Co_{0.02}Fe_{0.08}(111) crystal to analyze the classical spin orientation.

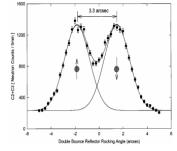


FIG. 2. Rocking curve of the double-bounce reflector against the interferometer, showing the birefringence splitting of 3.3 arcsec. The two neutron peaks have opposite polarization. The total intensity C2 + C3 is shown.

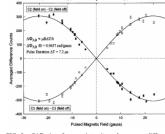
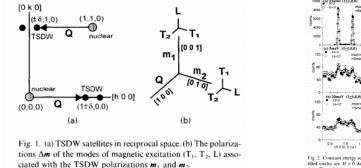



FIG. 5. SAB interference intensity, shown as difference counts of positive and negative field pulses relative to the zero-field counts, plotted as a function of the pulsed *B*-field strength. Each point is an average of four points at the center of the peak plateaus in the TOF patterns (Fig. 4). The solid lines are fits of a sinusoid to the data, with the pulse duration ΔT as the adjustable parameter.

Physical Review Letters, Vol. 80, 3165 (1998). 2. HEUSLER CRYSTAL: Inelastic polarised neutron scattering – Chromium Spin Density Wave

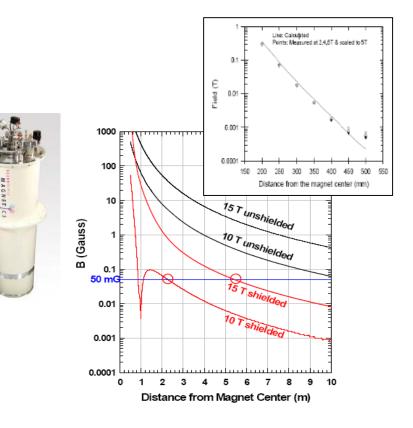
Heusler 111 polariser & analyser in triple-axis spectrometer

 \mathbf{F}_{i} 2. Constant energy scans score by F1500 widthers. The field circles are I = 0 dats. The opened circles are I = 5 that

Physica B, Vol. 241, 622 (1997)

Work at ORNL

3. SELF-SHIELDED ASYMMETRIC MAGNET


- Design study up to 15T.
- Asymmetric and self-shielding work in tandem to stablise the magnet
- First of its kind: 5 T "Slim-Sam". Still one of the most-stable & most-requested work horse at the SNS
- No relationship to 16T/14T magnet which is a symmetric magnet running asymmetrically (unstable).

Magnetic interference

Problem:

Solution: Self-shielded asymmetric magnet

4. Monte Carlo simulation for neutron scattering instrumentation design

5. R&D works of SESAME (Spin-Echo Scattering Angle Measurement)