

Vanadium based beam monitor update

Vendula Maulerova, IKON18, 25th February 2020

TOC

Beam Monitors at ESS

The prototype concept

Geometry tested at V17

Results

Absolute calibration at V17 and V20

Efficiency, Attenuation

Background limitations

Paper submitted to PRAB, arXiv: 2002.10108

Next steps

Beam Monitors anticipated to be required as ESS instruments

Near Sample Chopper/guide Bunker

V-monitor as a candidate to be placed after choppers and between guide sections.

Number of BM

3

Thin foil-based neutron beam monitor concept

Concept Inspired by ISIS [1] [2]

Thin foil-based neutron beam monitor concept

Concept Inspired by ISIS [1] [2]

Thin foil-based neutron beam monitor concept

Concept Inspired by ISIS [1] [2]

2.5

0.0

5.0

Neutron wavelength [Å]

7.5

10.0

efficiency of the ³He-counter

Geometry tested at V17

- 4 different ³He counters at distances 4.9 cm, 5.1 cm, 11 cm, 13 cm from the center of the foil tested at V17 at 3.35Å

-geometry is the easiest way to adjust the flux range of the V-monitor prototype without changing the attenuation

-there is a limit of how far one can go with the $^{3}\mbox{He}$ counter

V-foil

VND BM 2

Geometry tested at V17

Absolute calibration at V17 and V20

GROUP NND BM 3

Raw counts measured

21

V17: 3.35 Å, monochromator

-Absolute calibration possible within 25% of the absolute intensity ${\rm I}_{\rm 0}$

-The prototype detected decline in the flux of V17

Efficiency, Attenuation of the V-monitor

He-counters placed at 5 cm distance

V17: 3.35 Å, monochromator V20: 3.1 Å, chopper selection

Attenuation:

-0.04 mm foil < 1% for 0-10 Å -0.125 mm foil < 1% for 0-3 Å < 3% for 3-10 Å

Efficiency at 5 cm distance: -0.04 mm foil ~ 10⁻⁴ for 0.5-10 Å -0.125 mm foil ~ x 10⁻⁵ for 0.5-10 Å

40

n/s

Background beam off limitation

Conceptual figure

Suppose the maximum background intensity on the coutner is 1 n/s

Figure for 0.04 mm foil r [cm]

Background beam off limitation

Suppose the maximum background intensity on the coutner is 1 n/s

Figure for 0.04 mm foil ^{r [cm]}

Background beam off limitation

1 n/s

Suppose the ma

Suppose the maximum background intensity on the coutner is 1 n/s

Figure for 0.04 mm foil r [cm]

EUROPEAN

SPALLATION SOURCE

Submitted to PRAB :) ArXiv: 2002.10108

GROUP S VND BM 3

V20: Timing

Timing adequate for most applications apart of spectroscopy

Current timing understanding limited by chopper setup on V20.

Testing with ESS vertical integration chain

Testing with subset of ESS vertical integration chain

v20 test instrument utilizing prototype chopper systems and beam monitors planned for ESS. EPL (Europhysics Letters), 128(5):52001, jan 2020.

37

Testing with ESS vertical integration chain

Measuring at higher fluxes

Testing with ESS vertical integration chain

Measuring at higher fluxes

Stability measurements

Testing with ESS vertical integration chain

Measuring at higher fluxes

Stability measurements

TOF measurements

Testing with ESS vertical integration chain

Measuring at higher fluxes

Stability measurements

TOF measurements

Engineering implementation

Conclusions

Absolute calibration at V17 and V20

Efficiency, Attenuation

Background limitations

Paper submitted to PRAB, arXiv: 2002.10108

High rates Time of flight resolution

Stability

Engineering Implementation

Present Future

Thank you!

Sources

he' Is

VND BM

[1] ISIS. Isis neutron and muon source. https://www.isis.stfc.ac.uk, 2019. Accessed: 2019-04-03.

[2] Dr. Robert Bewley. Private commentation, 2018. ISIS Neutron and Muon Source, LET instrument scientist.

[3]V. Maulerova. Vanadium-based neutron-beam monitor. Master Thesis, Lund University, 2019

[4] Helmholtz-Zentrum Berlin European Spallation Source. https://www.helmholtz-berlin.de/user/experimental-infrastru ctures/instruments-neutrons/index_en.htmlAccessed: 2019-04-03

[5] V. Maulerova. Vanadium-based neutron beam monitor. ArxiV: 2002.10108