
Downstream of the Readout Master

Morten Jagd Christensen Data Management and Software Centre Experiment Control and Data Curation

Event Formation Unit

nexus file writer

EFU receives readouts EFU transmits events {t, pixelid}

EFU Input / Output

Readout Data

0000000	0000	0001	0001	1010	0010	0001	0004	0128
0000010	0000	0016	0000	0028	0000	0010	0000	0020
0000020	0000	0001	0004	0000	0000	0000	0000	0000
0000030	0000	0000	0000	0010	0000	0000	0000	0204
0000040	0004	8384	0084	c7c8	00c8	4748	0048	e8e9
0000050	00e9	6a69	0069	a8a9	00a9	2828	0028	fdfc
0000060	00fc	1819	0019	9898	0098	d9d8	00d8	5857
0000070	0057	7b7a	007a	bab9	00b9	3a3c	003c	8888
0000080	8888	8888	8888	8888	288e	be88	8888	8888
0000090	3b83	5788	8888	8888	7667	778e	8828	8888
00000a0	d61f	7abd	8818	8888	467c	585f	8814	8188
00000b0	8b06	e8f7	88aa	8388	8b3b	88f3	88bd	e988

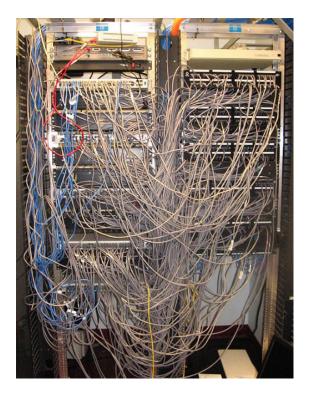
int NMXClusterer::AnalyzeHits(int triggerTimestamp, unsigned int frameCounter, int fecID, int vmmID, int chNo, int bcid, int tdc, int adc, int overThresholdFlag)

bool newEvent = false; double triggerTimestamp_ns = triggerTimestamp * 3.125; double deltaTriggerTimestamp_ns = 0;

if (m_oldTriggerTimestamp_ns != triggerTimestamp_ns)
{

Algorithms

EUROPEAN SPALLATION SOURCE


Neutron Events

... { t_n , p_n }, { t_{n+1} , p_{n+1} } ...

Instrument Mapping

Instrument Mapping

in 2011 an 2011 an 2011 an 2011 bank 1 vert 1200 R – 128 tubes bank 1 vert 1200 L – 128 tubes bank 1 horiz 1200 T - 80 tubes bank 1 horiz 1200 B- 80 tubes bank 2 horiz 500 T - 64 tubes bank 2 horiz 500 B – 64 tubes bank 2 vert 500 R - 48 tubes bank 2 vert 500 L – 48 tubes bank 3 - 1 of 2 - 128 tubes bank 3 - 2 of 2- 96 tubes Suggestion Each detector bank goes on separate rings. The biggest bank uses two rings. For each CAEN digitizer there **R**0 **R1** <u>R</u>2 R3 **R4 R**5 **R7 R**8 R9 R10 R11 R<u>6</u> are 4 front end nodes each capable of processing 8 tubes This requires 29 CAEN modules **Readout Backend** which is 2 more than the

theoretical minimum requires.

Readout data format

Also covers Diagnostic Mode noise

• Diagnostic Mode four amplitudes (117 bits – 4x32 bits packets)

		TOF (64)	FPGA ID (2)	Tube ID (3)	A (12)	B(12)	C(12)	D(12)
--	--	----------	-------------	-------------	--------	-------	-------	-------

• Diagnostic Mode noise (117 bits – 4x32 bits packets)

TOF (64)	FPGA ID (2)	Tube ID (3)	A (12)	B(12)	C(12)	D(12)

RingId	identifies detector bank
FENId	identifies sub bank (group of 32 tubes?)
FPGA	identifies group of subsub bank (8 tubes?)
TUBE	identifies tube within subsub bank

Amp A-D encodes straw and position along straw

	0	1	2	3	bytes
1		ding			0 - 1
	0x00	0x00			0 - 1
	0,00	Cookie		Version	2 - 5
	'E'	'S'	'S'	0	2
	Type /	OQID	Len	-	6 - 9
		UQID	Len	gin	6-9
	SubType	Pulse time	HI		10 - 13
		Pulse time	LO		14 - 17
		Prev. Pulse	time HI		18 - 21
		Prev. Pulse	time LO		22 - 25
		Sequence	Number		26 - 29
/	Ring ID FEN ID Length				
V					
		Time	HI]
	Time LO				
	FPGA	TUBE	DataS	eqNo	
	Amp		Amp		
	Amp	ЛА	Amp		
	Amp	ol C	Amp	D	
	Time LO				
	FPGA	TUBE	DataS	eqNo	
	Amp	ol A	Amp	l B	
	Amp	ol C	Amp	l D	

Your detector

- Common header and data headers for all detectors
- Detector specific readout fields must be defined

0	1	2	3	bytes
	ding			0 - 1
0x00	0x00 Cookie		Version	2 - 5
'E'	'S'	'S'	0 Version	2 - 5
Type / SubType	OQID	Len	-	6 - 9
	Pulse time	н		10 - 13
	Pulse time	LO		14 - 17
	Prev. Pulse	time HI		18 - 21
	Prev. Pulse	time LO		22 - 25
	Sequence	Number		26 - 29
Ring ID	FEN ID	Leng	;th	
{	dete	ur ctor re	}	

Reference Data

"a reference dataset is a **collection** of digitized **data** from a detector readout which has a **well defined interpretation**"

"we need reference datasets in order to deliver software for event processing"

Algorithms

	<pre>#include <algorithm></algorithm></pre>
	<pre>#include <cmath></cmath></pre>
	<pre>#include <gdgem dg_impl="" nmxclusterer.h=""></gdgem></pre>
	<pre>#include <common trace.h=""></common></pre>
	NMXClusterer::NMXClusterer(int bc, int tac, int acqWin, std::vector <int> xChips,</int>
	<pre>std::vector<int> yChips, int adcThreshold, int minClusterSize,</int></pre>
	float deltaTimeHits, int deltaStripHits, float deltaTimeSpan,
	float deltaTimePlanes) :
	pBC(bc), pTAC(tac), pAcqWin(acqWin), pXChipIDs(xChips), pYChipIDs(
	yChips), pADCThreshold(adcThreshold), pMinClusterSize(
	<pre>minClusterSize), pDeltaTimeHits(deltaTimeHits), pDeltaStripHits(</pre>
	deltaStripHits),
	<pre>deltaTimePlanes), m_eventNr(0)</pre>
	$\{\}$
	NMXClusterer::~NMXClusterer()
	Φ
	int NMXClusterer::AnalyzeHits(int triggerTimestamp, unsigned int frameCounter, int fecID,
	int vmmID, int chNo, int bcid, int tdc, int adc, int overThresholdFlag)
	{
	bool newEvent = false:
	double triggerTimestamp ns = triggerTimestamp * 3.125;
	<pre>double deltaTriggerTimestamp_ns = 0;</pre>
	if (m_oldTriggerTimestamp_ns != triggerTimestamp_ns)
	{
	AnalyzeClusters();
	newEvent = true;
	<pre>m_subsequentTrigger = false;</pre>
	m_eventNr++;
20	

Algorithm Description

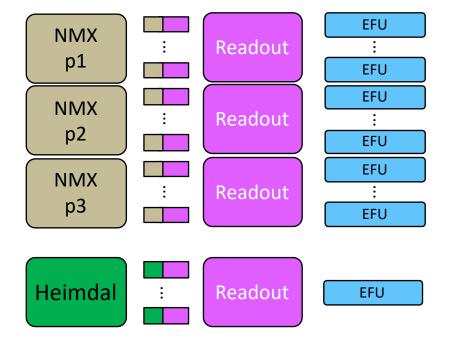
• Email, paper, report, whiteboard walk-through

Prototype implementation

C/C++, Python

Analyzed reference data

• Text/binary files, wireshark captures, C or C++ arrays



Speed Up

System scalability

EUROPEAN SPALLATION SOURCE

"With high flux comes high data rates. Multiple EFUs will be needed for most instruments . We need to consider how to speed up processing by parallelisation"

Integration Readiness Assessment

Glasgow Coma Scale

EUROPEAN SPALLATION SOURCE

TABLE 38-2					
Glasgow Coma Scale					
BEHAVIOR	RESPONSE	SCORE			
Eye opening response	Spontaneously To speech To pain No response	4 3 2 1			
Best verbal response	Oriented to time, place, and person Confused Inappropriate words Incomprehensible sounds No response	5 4 3 2 1			
Best motor response	Obeys commands Moves to localized pain Flexion withdrawal from pain Abnormal flexion (decorticate) Abnormal extension (decerebrate) No response	6 5 4 3 2 1			
Total score:	Best response Comatose client Totally unresponsive	15 8 or less 3			

Example - LoKI

Detector Coma Scale				
FEATURE	STATE	SCORE		
Dialogue	Meetings, agreed decisions Initial meeting/discussion Interest in meeting/discussion No contact established	4 3 2 1 4		
Integration Model	Defined, understood, agreed IM Intention stated IM Undecided Implicit/unspecified	4 3 2 1 4		
Logical Geometry	Agreed (Inst/ECDC/DRAM) Under negociation Acknowledged Unspecified	4 3 2 1 4		
Digital Mappings	Documented revision control Being defined Aware Not started	4 3 2 1 3		
Total score:	- Best response Comatose Totally unresponsive	16 15 11 or less 4		

Discussions among DMSC (ECDC + DRAM), Instrument Scientist, Detector Group, In-Kind partner

Integration Model B decided

Logical geometry defined and agreed

Detector Readout Data format specified Details of detector mappings still being refined

Not quite, but nearly ready for integration

Talk to

Experiment Control and Data Curation Tobias Richter

DRAM

Data Reduction Analysis and Modelling Thomas Holm Rod

Provides software for

- Instrument and readout control
- Readout data reception and parsing
- Event Formation calculations
- Fast sample environment
- Data aggregation
- Nexus file writing
- Detector commissioning tools
- Live detector statistics

Provides software for

- Mantid
- SasView
- SpinW
- BornAgain
- McStas
-

- There is a lot of stuff to specify/do downstream the Readout Master
- That stuff should go in a Interface Specification (ICD)
- The ICD is the 'contract' that helps all parties moving forward most efficiently
- Use the Detector Coma Scale to assess and progress integration readiness

The End

