ESS medium beta cavity HOMs

$319+9$

Gabriele Costanza, Lunds Universitet

Table of contents

Design
$Q_{\text {ext }}$
Mechanical simulations
Mode spectrum with PEC and PMC BCs
R / Q vs. β. Fundamental passband
R / Q vs. β. Modes close to the $5^{\text {th }}$ harmonic
R / Q vs. β. Fundamental passband
Electric field norm of the modes close to the $5^{\text {th }}$ harmonic Electric field norm of the modes close to the $7^{\text {th }}$ harmonic Electric field norm of the modes close to the $8^{\text {th }}$ harmonic Tuning
HOMs power
Power Spectrum
Average Power
Conclusions and future development

Design ${ }^{1}$

Frequency [MHz]	704.4234
Accelerating field $[\mathrm{MV} / \mathrm{m}]$	16.7
Geometric β	0.67

Design constraints

1. Cavity wall angle ≥ 7

2. Only 2 cups
3. Symmetric cavity

[^0]Eigenfrequency $=7.044224 \mathrm{e} 8$ Surface：Electric field norm $\mathrm{N} / \mathrm{m})$

$0.06 \quad 0.04 \quad 0.02 \quad 0 \quad-0.02-0.04-0.06$

Now simulating cell number：2

	A	B	a	b	
1	0.0450	0.0450	0.0100	0.0200	\pm
2	0.0450	0.0450	0.0100	0.0215	
3	0.0450	0.0450	0.0100	0.0230	
4	0.0450	0.0450	0.0115	0.0200	
5	0.0450	0.0450	0.0115	0.0215	
6	0.0450	0.0450	0.0115	0.0230	
7	0.0450	0.0450	0.0130	0.0200	
8	0.0450	0.0450	0.0130	0.0215	
9	0.0450	0.0450	0.0130	0.0230	
10	0.0450	0.0475	0.0100	0.0200	
11	0.0450	0.0475	0.0100	0.0215	
12	0.0450	0.0475	0.0100	0.0230	
13	0.0450	0.0475	0.0115	0.0200	
14	0.0450	0.0475	0.0115	0.0215	
15	0.0450	0.0475	0.0115	0.0230	
16	0.0450	0.0475	0.0130	0.0200	\cdots
17	$\text { 4) } \quad \text { a.... }$		．．．．．．	．$n .$.	\checkmark

	R＿over＿Q	G	Epk＿over＿Eacc	Bpk＿over＿Eacc	Kcc
1	60.9636	197.4279	3.4541	4.9228	1.5936

Simulation completed in 142.194697 seconds

Tuning．．．Now using $D=180.000000 \mathrm{~mm}$
fx＞＞

- The design cannot be orthogonalized because of the strong correlation between the RF parameters
- Helps to identify the part of the parameter space that is most convenient and to understand why you can't have the best of both worlds unless you relax the constraints such as the slope of the side wall of the cells, number of cups, $Q_{\text {ext }}$
- It is possible to build a model of the RF parmeters and make predictions. The design can be greatly automatized.

External Q of the fundamental mode vs. antenna penetration

- simulations on half a cavity
- coupler fillet $=8 \mathrm{~mm}$
- distance between the center of the coupler and the end cell $=100$ mm
- mesh $=2.45$ mil. degrees of freedom

Freq. [MHz]	$Q_{\text {ext }}$	Antenna penetr. $[\mathrm{mm}]$
704.422	9.946 e 5	4
704.422	8.752 e 5	5
704.422	8.073 e 5	6
704.422	7.452 e 5	7
704.422	6.88 e 5	8
704.422	6.366 e 6	9

Extensive mechanical simulations

Stiffening Rings Radius $[\mathrm{mm}]$	70
Tuning Sensitivity $\Delta f / \Delta z[\mathrm{KHz} / \mathrm{mm}]$	214.83
Cavity Stiffness $\mathrm{Kcav}[\mathrm{KN} / \mathrm{mm}]$	1.286
LDF coeff. fixed ends $\mathrm{KL}\left[\mathrm{Hz} /(\mathrm{MV} / \mathrm{m})^{2}\right] @ \beta=0.67$	-0.735
LDF coeff. free ends $\mathrm{KL}\left[\mathrm{Hz} /(\mathrm{MV} / \mathrm{m})^{2}\right] @ \beta=0.67$	-23.35
LFD @ Kext $=21 \mathrm{KN} / \mathrm{mm}\left[\mathrm{Hz} /(\mathrm{MV} / \mathrm{m})^{2}\right] @ \beta=0.67$	-2.04
Pressure Sensitivity fixed ends $\mathrm{Kp}[\mathrm{Hz} / \mathrm{mbar}](1 \mathrm{mbar}$ applied $)$	23.08
Pressure Sensitivity free ends $\mathrm{Kp}[\mathrm{Hz} / \mathrm{mbar}](1 \mathrm{mbar}$ applied $)$	-364.94
Max VM stress fixed ends $[\mathrm{MPa}](1$ bar applied $)$	$20.5 \mathrm{~b} / 19 \mathrm{i}$

PEC boundary condition at the beam tubes ends

Modes 20 MHz apart from the harmonics of 352.21 MHz in red

PMC boundary condition at the beam tubes ends

Modes 20 MHz apart from the harmonics of 352.21 MHz in red

PEC (perfE) or PMC (perfH) are applied at the end of the beam tubes

freq $[\mathrm{MHz}]($ perfE $)$	$\Delta f[\mathrm{MHz}]$ from $5^{\text {th }}$ harm.	freq $[\mathrm{MHz}]($ perfH $)$	$\Delta f[\mathrm{MHz}]$ from $5^{\text {th }}$ harm.
1743.905	-17.145	1743.789	-17.261
1744.021	-17.029	1744.021	-17.029
1744.704	-16.346	1774.704	-16.346
1745.544	-15.505	1745.545	-15.505
1746.221	-14.829	1746.221	-14.829
1749.588	-11.462	1749.566	-11.484

Table: Modes close to the $5^{\text {th }}$ harmonic 1761.1 MHz

freq $[\mathrm{MHz}]($ perfE $)$	$\Delta f[\mathrm{MHz}]$ from $7^{\text {th }}$ harm.	freq $[\mathrm{MHz}]($ perfH $)$	$\Delta f[\mathrm{MHz}]$ from $7^{\text {th }}$ harm.
$2463.291\left(1^{\text {st }}\right)$	-2.179	n.d. ${ }^{1}$	n.d. 1
$2463.291\left(2^{\text {nd }}\right)$	-2.179	n.d. 1	n.d. 1

Table: Modes close to the $7^{\text {th }}$ harmonic 2465.5 MHz

freq $[\mathrm{MHz}]($ perfE $)$	$\Delta f[\mathrm{MHz}]$ from $8^{\text {th }}$ harm.	freq $[\mathrm{MHz}]($ perfH $)$	$\Delta f[\mathrm{MHz}]$ from $8^{\text {th }}$ harm.
2808.352	-9.328	2802.285	-15.395
2812.679	-5.000	2804.512	-13.168
2825.223	7.543	2821.817	4.137

Table: Modes close to the $8^{\text {th }}$ harmonic 2817.7 MHz

[^1]
R / Q vs. β. Fundamental passband.

Figure: R / Q vs. β for the fundamental passband
R / Q vs. β. Modes close to the $5^{\text {th }}$ harmonic (1761.05 MHz)

Figure: *) Modes within 20 MHz from the $5^{t h}$ harmonic. Some modes with a non negligible R / Q are far from the $5^{\text {th }}$ harmonic.
R / Q vs. β. Modes close to the $8^{\text {th }}$ harmonic (2817.7 MHz)

Electric field norm of the modes close to the $5^{\text {th }}$ harmonic

Figure: 1743.905 MHz (PEC)

Figure: 1743.789 MHz (PMC)

Figure: 1744.021 MHz (PMC)

Figure: 1744.704 MHz (PMC)

Electric field norm of the modes close to the $5^{\text {th }}$ harmonic

Figure: 1745.545 MHz (PEC)

Figure: 1745.545 MHz (PMC)

Figure: 1746.221 MHz (PMC)

Figure: 1749.588 MHz (PEC)

Electric field norm of the modes close to the $7^{\text {th }}$ harmonic

Figure: 2463.291 (1) MHz (PEC)

Figure: 2463.291(2) MHz (PEC)

Electric field norm of the modes close to the $8^{\text {th }}$ harmonic

Figure: 2808.352 MHz (PEC)

Figure: 2802.285 MHz (PMC)

Figure: 2812.679 MHz (PEC)

Figure: 2804.512 MHz (PMC)

Figure: 2825.223 MHz (PEC)
Figure: 2821.817 MHz (PMC)

Tuning. Extending or compressing the $3^{r d}$ cell
Fundamental Passband

Table: Modes of the fundamental passband

Tuning. Extending or compressing the $3^{r d}$ cell

Table: Modes close to the $5^{\text {th }}$ harmonic. The closest mode is 9 MHz apart from the $5^{\text {th }}$ harmonic for 1 mm of compression.

Tuning. Extending or compressing the $3^{r d}$ cell

Fixed ring

Moving ring

Table: Modes close to the $8^{\text {th }}$ harmonic. The closest mode is 4.8 MHz apart from the $8^{\text {th }}$ harmonic for 1 mm of compression.

HOMs power

Development of 2 codes

- Power Spectrum
- Both time and frequency domain, based on a ODE
- Includes transient! Evolution of the fields in time domain
- accurate
- physical interpretation
- slow, very CPU intensive so only 1 e 5 bunches of 1 nC
- Average power with voltage envelope
- only the envelope
- no evolution of the fields in time
- no power spectrum
- fast, 1e6 bunches of 1 nC

All the results at $\beta=0.67, Q_{\text {ext }}=10^{6}$

Mode frequency 1749.588 MHz

- Coherency between the RF field and the current leads to a resonant excitation of the mode
- Modes far from a multiple of the bunch frequency are not coherent with the current

Mode frequency 1749.588 MHz

Power Spectrum

Average powers. 1e6 bunches, 1 nC of charge, $T=1 / 14 \mathrm{~Hz}, Q_{\text {ext }}=1 \mathrm{e} 6$

$P_{\text {avg }}[\mathrm{W}]$	Frequency $[\mathrm{MHz}]$	$P_{\text {avg }}[\mathrm{W}]$	Frequency $[\mathrm{MHz}]$
0,0012	696.650	$3,9524 \mathrm{e}-29$	1695.760
0,0136	698.231	2,2896	1727.305
0,0219	700.347	0,1152	1731.287
0,4138	702.411	1,0979	1732.028
0,2555	703.888	0,0270	1736.091
	704.423	0,0960	1743.904
0,0013	1515.651	$1,1768 \mathrm{e}-25$	1744.020
$1,4619 \mathrm{e}-06$	1517.185	$6,7243 \mathrm{e}-26$	1744.704
$3,5717 \mathrm{e}-05$	1524.349	$2,8381 \mathrm{e}-27$	1745.544
0,0004	1534.231	$2,0787 \mathrm{e}-27$	1746.221
$9,7069 \mathrm{e}-05$	1544.856	0,0591	1749.587
$1,3934 \mathrm{e}-07$	1553.281	0,4142	2808.351
0,0117	1681.030	$4,0973 \mathrm{e}-05$	2812.679
0,0004	1681.049	0,8040	2825.223
Total $P_{\text {avg }}[W]$	5		

Conclusions

- A bad case scenario has been assumed: Some modes which contribute to the total HOM power have a low $Q_{\text {ext }}$ (beam pipe modes), these modes have to be investigated further. They couple well with the FPC and the bellows which help to dissipate some power
- Preliminary results show that the HOM power is low, to be verified with other codes
- Remember that some HOMs close to the harmonics of the beam line have a low R / Q and some other HOMs have a non negligible R / Q but are far from the harmonics
Next
- Complete the power spectrum with 1e6 bunches, add bunch noise
- Consider the dynamics of the beam
- Compare with existing codes

[^0]: ${ }^{1}$ More information on the specs. of the accelerator in: The ESS Superconducting Linear Accelerator, SRF2013, Paris, France. C.Darve, M.Eshraqi, M. Lindroos, D. McGinnis, S. Molloy, ESS, Lund, Sweden.
 P.Bosland, CEA/IRFU, Saclay, France. S. Bousson, CNRS/IPN Orsay, France

[^1]: ${ }^{1}$ the mode is not present with the PMC BC

