

Latest Progress from FREIA

Rocío Santiago Kern

FREIA Laboratory, Uppsala University

15th of May 2014

Contents

- Work for the ESS Accelerator
- Spoke Cavity Testing
- Bunker
- RF Power Station
- Helium Liquefier
- Horizontal Cryostat
- Vacuum System

Work for the ESS Accelerator (1/2),

Work for the ESS Accelerator (1/2), $\mathbb{R}^{\mathbb{R}}$

Work for the ESS Accelerator (1/2),

Work for the ESS Accelerator (2/2), $\mathbb{R}^{\mathbb{R}}$

Work for the ESS Accelerator (2/2), A^{RER}

Future

Spoke Linac Cryomodules (13#) UU-ESS-IPNO Collaboration

- Continue prototype testing (2016)
- Acceptance testing of spoke linac cryostat with 2 cavities each
- Requires high throughput and planning (7-8 weeks per cryomodule)

Work for the ESS Accelerator (2/2), A^{RER}

Future

Spoke Linac Cryomodules (13#) UU-ESS-IPNO Collaboration

- Continue prototype testing (2016)
- Acceptance testing of spoke linac cryostat with 2 cavities each
- Requires high throughput and planning (6 weeks per cryomodule)

Valve Boxes (13#)

UU-ESS-Industry Collaboration

• Development and acceptance tests of the spoke crymodules valve boxes

• To test the spoke cavity, three main subsystems are needed

Drawing taken from P. Duthil's presentation at the Vacuum Standardization Meeting, Lund Feb 2014

- FREIR
- To test the spoke cavity, three main subsystems are needed

• To test the spoke cavity, three main subsystems are needed

• To test the spoke cavity, three main subsystems are needed

• To test the spoke cavity, three main subsystems are needed

Bunker

Chicane:

- Waveguides
- Return GHe lines

Bunker

Chicane:

- Waveguides
- Return GHe lines

RF Power Station

2 independent systems to power the cavity

ESS pre-series #1

- 352 MHz, 400 kW pulsed
 - Tetrode technology
 - FREIA 2pc
 - ESS linac 26pc
- FREIA design based on TH595 (most competitive solution)

RF Power Station

2 independent systems to power the cavity

ESS pre-series #1

- 352 MHz, 400 kW pulsed
 - Tetrode technology
 - FREIA 2pc
 - ESS linac 26pc
- FREIA design based on TH595 (most competitive solution)

Solid-state R&D station

- 352 MHz, 400 kW pulsed
 - FREIA 1pc
- Commercial design
 - 1 kW transistors
 - 8 kW modules
 - coaxial combiner

RF Power Station

2 independent systems to power the cavity

ESS pre-series #1

- 352 MHz, 400 kW pulsed
 - Tetrode technology
 - FREIA 2pc
 - ESS linac 26pc
- FREIA design based on TH595 (most competitive solution)

Solid-state R&D station

- 352 MHz, 400 kW pulsed
 - FREIA 1pc
- Commercial design
 - 1 kW transistors
 - 8 kW modules
 - coaxial combiner

Helium Liquefier (1/2)

- Manufactured by Linde Kryotechnik AG
- **Over 140 l/h** at 4.5K
- 2000 l LHe dewar

Helium Liquefier (1/2)

- Manufactured by Linde Kryotechnik AG
- **Over 140 l/h** at 4.5K
- 2000 l LHe dewar
- 100 m³ gasbag + recovery system

Helium Liquefier (1/2)

- Manufactured by Linde Kryotechnik AG
- **Over 140 l/h** at 4.5K
- 2000 1 LHe dewar
- 100 m³ gasbag + recovery system
- HNOSS connected in **closed loop**

Helium Liquefier (2/2)

Over 150 l/h

- with LN2 pre-cooling,
- at LHe dewar rising level

R. Santiago Kern, 15th May 2014

FREIR

- HNOSS: Horizontal Nugget for Operation
 - of Superconducting Systems Houses the cavities
 - Main Vacuum Vessel
 - Valvebox

- **HNOSS**: Horizontal Nugget for Operation of Superconducting Systems Houses the cavities
 - Main Vacuum Vessel
 - Valvebox
- 7 Interconnection box (**ICB**): Distributes cryogens to HNOSS and CM

- HNOSS: Horizontal Nugget for Operation of Superconducting Systems Houses the cavities

 Main Vacuum Vessel
 Valvebox
 - Interconnection box (**ICB**): Distributes cryogens to HNOSS and CM
 - Cryogenic **transfer lines** (inlet and outlet) LN₂ and LHe

Designed by Accelerator and Cryogenic Systems, France Manufactured by Cryo Diffusion, France

- **HNOSS**: Horizontal Nugget for Operation of Superconducting Systems Houses the cavities
 - Main Vacuum Vessel
 - Valvebox
- Interconnection box (ICB): Distributes cryogens to HNOSS and CM
- Cryogenic transfer lines LN₂ and LHe
- Gas heater for return GHe From 5K-7K to 300K

- **HNOSS**: Horizontal Nugget for Operation of Superconducting Systems Houses the cavities
 - Main Vacuum Vessel
 - Valvebox
- Interconnection box (**ICB**): Distributes cryogens to HNOSS and CM
- Cryogenic transfer lines LN₂ and LHe
- **Gas heater** for return GHe From 5K-7K to 300K
- Control system

Shields

_

- Thermal shield (70K)

Shields

_

- Thermal shield (70K)
- Distributes cryogens
 - LN₂: thermal shield, table, Tesla power couplers
 - LHe: cavities

Shields

- Vacuum (room temperature)
- Magnetic shield (room temperature)
- Thermal shield (70K)
- Distributes cryogens
 - LN₂: thermal shield, table, Tesla power couplers
 - LHe: cavities
- Supercritical Helium path for cooling of spoke power coupler

Convection

Radiation

Cavity

Magnetic Field

Radiation

Container

Magnetic Shield

Thermal Shield

Multi-layer Insulation (MLI)

Shields

- Thermal shield (70K)
- Distributes cryogens
 - LN₂: thermal shield, table, Tesla power couplers
 - LHe: cavities
- Supercritical Helium path for cooling of spoke power coupler
- Contains piping and valves to produce and store **4K** and **2K** LHe

Shields

- Vacuum (room temperature)
- Magnetic shield (room temperature)
- Thermal shield (70K)
- Distributes cryogens
 - LN₂: thermal shield, table, Tesla power couplers
 - LHe: cavities
- Supercritical Helium path for cooling of spoke power coupler
- Contains piping and valves to produce and store **4K** and **2K** LHe
- HNOSS mechanical characteristics:
 - Inner length 3240 mm
 - Inner diameter 1300 mm
 - Beam axis at 1.6 m

Convection

Radiation

Cavity

Magnetic Field

Radiation

Container

Magnetic Shield

Thermal Shield

Multi-layer Insulation (MLI)

Shields

- Vacuum (room temperature)
- Magnetic shield (room temperature)
- Thermal shield (70K)
- Distributes cryogens
 - LN₂: thermal shield, table, Tesla power couplers
 - LHe: cavities
- Supercritical Helium path for cooling of spoke power coupler
- Contains piping and valves to produce and store **4K** and **2K** LHe
- HNOSS mechanical characteristics:
 - Inner length 3240 mm
 - Inner diameter 1300 mm
 - Beam axis at 1.6 m

+ Mock-up Cavity for acceptance tests

Convection

Radiation

Cavity

Magnetic Field

Radiation

Container

Magnetic Shield

Thermal Shield

Multi-layer Insulation (MLI)

Shields

- Vacuum (room temperature)
- Magnetic shield (room temperature)
- Thermal shield (70K)
- Distributes cryogens
 - LN₂: thermal shield, table, Tesla power couplers

Magnetic Shield

Thermal Shield

Multi-layer Insulation (MLI) *

- LHe: cavities
- Supercritical Helium path for cooling of spoke power coupler
- Contains piping and valves to produce and store **4K** and **2K** LHe
- HNOSS mechanical characteristics:
 - Inner length 3240 mm
 - Inner diameter 1300 mm
 - Beam axis at 1.6 m
 - + Mock-up Cavity for acceptance tests

Magnetic Field

Radiation

Vacuum System (1/2)

Insulation Vacuum

High degassing rates (MLI) Insulation Vacuum: 10⁻⁴-10⁻⁵ mbar (with cryopumping 10⁻⁶ mbar)

→ Turbomolecular pump

Vacuum System (1/2)

Vacuum System (1/2)

Vacuum System (2/2)

Insulation Vacuum

Insulation Vacuum: 10⁻⁴-10⁻⁵ mbar (with cryopumping 10⁻⁶ mbar)

High degassing rates (MLI)

Turbomolecular pump

By begining of August 2014

- **Temperature variation: 4K-2K**
 - Dry system 90 W at 1.8 K
 - Mass flow capacities
 - 3.2 g/s at 10 mbar
 - 4 g/s at 15 mbar
 - 10 g/s at P $\geq 200 \text{ mbar}$

Beam Vacuum: 10^{-10} - 10^{-11} mbar \rightarrow *Ion/Getter pump*

Thank you for your attention!

